
The Babel2 Manual

Martin Loetzsch

⇤
, Pieter Wellens

⇤
, Joachim De Beule

⇤
, Joris Bleys

⇤
and Remi van Trijp

⇤⇤

⇤
VUB AI Lab, Vrije Universiteit Brussel

⇤⇤
Sony Computer Science Laboratory, Paris

Revision 2

This document can be cited as:

M. Loetzsch, P. Wellens, J. De Beule, J. Bleys and R. van Trijp. The Babel2 manual.

AI-Memo 01-08, AI-Lab VUB, Brussels, Belgium, 2008.

@TECHREPORT { babel2manual,
author = { Loetzsch, Martin and Wellens, Pieter and

De Beule, Joachim and Bleys, Joris and van Trijp, Remi },
title = { The {B}abel2 Manual },
number = { AI-Memo 01-08 },
institution = { AI-Lab VUB },
year = { 2008 },
address = { Brussels, Belgium } }

This work was partially funded by the EU FET ECAgents Project IST-1940, by the FP7 ALEAR
Project and by FWOAL328.

1

Contents

1 Introduction 10

1.1 Getting started . 10

1.2 Overview of Babel2 . 10

systems . 10

libraries . 11

experiments . 11

sharing . 11

examples . 11

2 Utilities 12

2.1 Copying Objects . 12

2.1.1 generic function copy-object . 12

2.1.2 generic function copy-object-content . 12

2.2 Blackboards . 14

2.2.1 structure blackboard . 14

2.2.2 generic function fields . 14

2.2.3 generic function field? . 14

2.2.4 generic function add-data-field . 14

2.2.5 generic function get-data . 15

2.2.6 generic function find-data . 15

2.2.7 generic function set-data . 15

2.2.8 generic function remove-data . 15

2.3 Trees . 16

2.3.1 structure node . 16

2.3.2 structure dummy-top-node . 16

2.3.3 structure mtree . 16

2

Contents 3

2.3.4 generic function has-parent? . 16

2.3.5 generic function traverse . 16

2.3.6 generic function leaf? . 17

2.3.7 generic function top? . 17

2.3.8 generic function leafs . 17

2.3.9 generic function add-node . 17

2.3.10 generic function replace-node . 17

2.3.11 generic function depth . 17

3 Monitoring Experiments 19

3.1 Events, Monitors and Notfications . 19

3.1.1 macro define-event . 20

3.1.2 macro define-monitor . 21

3.1.3 macro define-event-handler . 21

3.1.4 macro notify . 22

3.1.5 macro activate-monitor . 22

3.1.6 macro deactivate-monitor . 22

3.1.7 macro toggle-monitor . 23

3.1.8 macro toggle-monitors . 23

3.1.9 macro print-all-monitors . 23

3.1.10 macro print-all-events . 23

3.1.11 Pre-defined Events . 23

3.1.11.1 monitor event interaction-started . 23

3.1.11.2 monitor event interaction-finished . 23

3.1.11.3 monitor event series-finished . 24

3.1.11.4 monitor event batch-finished . 24

3.1.11.5 monitor event reset-monitors . 24

3.2 Built-in Monitor Classes . 24

3.2.1 Printing Program Traces . 24

3.2.1.1 monitor class trace-monitor . 25

3.2.1.2 function activate-bu↵ering-of-trace-monitors 25

Contents 4

3.2.1.3 function print-bu↵ered-messages-of-trace-monitors 26

3.2.1.4 function clear-trace-monitors-bu↵er 26

3.2.1.5 macro deactivate-bu↵ering-of-trace-monitors 26

3.2.1.6 generic function print-with-overline . 26

3.2.2 Recording Data . 27

3.2.2.1 monitor class data-recorder . 27

3.2.3 Outputting Recorded Data . 28

3.2.3.1 monitor class data-handler . 28

3.2.3.2 monitor class data-printer . 28

3.2.3.3 monitor class data-file-writer . 29

3.2.3.4 monitor class text-data-file-writer . 29

3.2.3.5 monitor class lisp-data-file-writer . 30

3.2.4 Plotting Data with Gnuplot . 31

3.2.4.1 monitor class gnuplotter . 31

3.2.4.2 monitor class gnuplot-display . 33

3.2.4.3 monitor class gnuplot-graphic-generator 33

3.2.4.4 monitor class gnuplot-display-and-graphic-generator 35

3.2.4.5 monitor class gnuplot-file-writer . 35

3.2.5 Recording and Plotting Lists of Data . 35

3.2.5.1 monitor class alist-recorder . 35

3.2.5.2 monitor class alist-handler . 36

3.2.5.3 monitor class alist-printer . 36

3.2.5.4 monitor class alist-gnuplotter . 37

3.2.5.5 monitor class alist-gnuplot-display . 38

3.2.5.6 monitor class alist-gnuplot-graphic-generator 39

3.2.5.7 monitor class alist-gnuplot-display-and-graphic-generator 40

3.3 Behind the Scenes . 40

3.3.1 Classes for Monitors and Events . 40

3.3.1.1 class monitor . 40

3.3.1.2 class event . 41

3.3.1.3 global variable *monitors* . 41

Contents 5

3.3.1.4 global variable *events* . 41

3.3.1.5 function get-monitor . 41

3.3.1.6 function get-event . 42

3.3.2 The Creation of Monitors, Events and Handlers 42

3.3.2.1 function make-monitor-unless-already-defined 42

3.3.2.2 function subscribe-to-event . 42

3.3.2.3 function make-event-unless-already-defined 42

3.3.2.4 function make-event-handler . 43

3.3.3 Defining own Monitor Classes . 44

4 The Experiment Framework 45

4.1 Agents Situated in the World . 45

4.1.1 Actions Performed on the World . 45

4.1.1.1 class action . 45

4.1.1.2 class no-action . 46

4.1.1.3 class world . 46

4.1.1.4 generic function initialize-world-for-next-interaction 46

4.1.1.5 generic function update-world . 46

4.1.2 Running Agents . 47

4.1.2.1 class agent . 47

4.1.2.2 generic function run-agent . 48

4.1.2.3 generic function plan-action . 48

4.1.2.4 generic-function plan-action-based-on-last-action 49

4.1.2.5 generic function perform-action . 49

4.1.2.6 monitor event run-agent-started . 49

4.1.2.7 monitor event run-agent-finished . 50

4.1.2.8 generic function initialize-interaction 50

4.1.2.9 generic function consolidate-agent . 50

4.2 Interacting Agents . 50

4.2.1 Experiments and Populations . 50

4.2.1.1 class experiment . 50

Contents 6

4.2.1.2 generic function initialize-population 51

4.2.1.3 monitor event population-initialized 51

4.2.2 Running an Interaction . 52

4.2.2.1 generic function determine-interacting-agents 52

4.2.2.2 monitor event interacting-agents-determined 52

4.2.2.3 generic function run-interaction . 52

4.2.2.4 generic function called-before-run-interaction 53

4.2.2.5 generic function called-after-run-interaction 53

4.2.3 Running Experiments . 54

4.2.3.1 generic function run-series . 54

4.2.3.2 generic function run-batch . 54

4.2.3.3 monitor trace-interaction . 55

4.2.3.4 monitor trace-experiment . 55

4.3 Learning Mechanisms . 55

4.4 An Interaction Example . 55

4.5 Running Parallel Series of Experiments . 57

4.5.1 function run-parallel-batch . 57

4.5.2 function create-graphs-for-di↵erent-experimental-conditions 59

4.5.3 function create-graphs-for-di↵erent-experimental-configurations 61

4.5.4 function create-graphs-for-di↵erent-population-sizes 64

5 Learning 67

5.1 Base classes . 67

5.1.1 class diagnostic . 67

5.1.2 monitor event diagnostic-started . 67

5.1.3 class problem . 67

5.1.4 monitor event diagnostic-returned-problems . 68

5.1.5 class repair-strategy . 68

5.1.6 monitor event repairing-started . 69

5.1.7 monitor event repairing-finished . 69

5.1.8 class object-with-learning-mechanisms . 69

Contents 7

5.1.9 generic function add-diagnostic . 69

5.1.10 generic function delete-diagnostic . 70

5.1.11 generic function add-repair-strategy . 70

5.1.12 generic function delete-repair-strategy . 70

5.1.13 monitor trace-learning . 70

5.1.14 monitor trace-learning-verbose . 70

5.2 Process level learning . 70

5.2.1 class process-diagnostic . 71

5.2.2 generic function diagnose-process . 71

5.2.3 class task-problem . 71

5.2.4 class process-repair-strategy . 72

5.2.5 generic function repair-process . 72

5.3 Agent level learning . 73

5.3.1 class agent-diagnostic . 73

5.3.2 generic function diagnose-agent . 73

5.3.3 class agent-repair-strategy . 73

5.3.4 generic function repair-agent . 74

5.3.5 class rerun-data . 74

5.3.6 class rerun-data-with-restored-task . 74

5.4 FCG level learning . 74

5.4.1 class fcg-diagnostic . 75

5.4.2 generic function diagnose-fcg . 75

5.4.3 class fcg-repair-strategy . 75

5.4.4 generic function repair-fcg . 76

5.4.5 class fcg-agent . 76

5.5 Detailed example . 77

6 Tasks and Processes 80

6.1 Tasks, task-processors and task-results . 80

6.1.1 Task . 80

6.1.1.1 class task . 80

Contents 8

6.1.1.2 generic function get-process-result . 81

6.1.1.3 generic function run-process . 81

6.1.1.4 generic function goal-achieved . 81

6.1.1.5 generic function finished-processes . 82

6.1.1.6 generic function add-process . 82

6.1.1.7 generic function delete-process . 82

6.1.1.8 generic function run-task . 82

6.1.1.9 generic function get-all-process-dependencies 82

6.1.1.10 generic function get-all-dependent-processes 82

6.1.1.11 generic function dependencies-solved? 82

6.1.1.12 generic function get-processes-without-dependencies 83

6.1.1.13 generic function get-process-dependencies 83

6.1.1.14 generic function add-process-result 83

6.1.2 Behind the scenes: Running of a Task . 83

6.1.2.1 structure task-processor . 83

6.1.2.2 generic function restart-task . 84

6.1.2.3 generic function run-processes . 84

6.1.2.4 structure task-result . 84

6.1.2.5 structure task-result-collection . 85

6.1.2.6 generic function best-task-result . 85

6.1.2.7 generic function best-task . 86

6.2 Processes and Process-results . 86

6.2.1 structure process-result . 87

6.2.2 generic function handle-process-result . 87

6.2.3 generic function handle-process-results . 87

6.3 Implementing your own task . 87

6.4 Process Learning Mechanisms . 89

Contents 9

7 Fluid Construction Grammar: Syntax and Semantics 90

7.1 Introduction . 90

7.2 Syntax and Semantics of FCG . 90

7.2.1 Modification of Units and Moving Information between Units 93

7.3 Language Processing in FCG . 96

8 Test Framework 98

8.1 Writing tests . 98

8.1.1 macro test-error . 98

8.1.2 macro test-ok . 98

8.1.3 macro test-assert . 98

8.2 Example . 99

1 Introduction

This document serves as a technical documentation of the Babel2 framework. It is work in
progress and it is our aim to continuously improve and enhance the text. This manual accom-
panies Babel2 which can be downloaded for free at http://arti.vub.ac.be/b2dl/. Furthermore,
http://fcg-net.org contains additional background information and downloadable papers that
show in-depth experiments with Babel2.

Babel2 connects the implementations of our core technologies such as Fluid Construction Grammar

(FCG) and Incremental Recruitment Language (IRL) with mechanisms for multi-agent interactions,
robotic embodiment, cognitive processing and learning. An extensive monitoring system gives
access to every detail of Babel2’s intermediate representations and dynamics and a high modularity
ensures that the system can be used in a very wide variety of scenarios.

Babel2 is written in Common Lisp and runs in all major Lisp implementations on all major plat-
forms. Its source code is frequently released to the public under the GNU General Public License.

1.1 Getting started

Please go to http://arti.vub.ac.be/b2dl/ and follow the instructions for setting up a Lisp
environment, configuring Babel2 and testing the Babel2 installation.

1.2 Overview of Babel2

The file system structure of Babel2 consists of five important subdirectories:

systems contains implementations of our core technologies:

• fcg-2 : Fluid Construction Grammar

• irl : Incremental Recruitment Language

• experiment-framework : for scripting of language games. Provides abstract classes such as
experiment, agent and world. It also contains the base classes for learning. (see Chapter 4)

• tasks-and-processes: A module that provides a way to organize and run multiple interdepen-
dent smaller tasks (called processes). It provides a basic best-first search to handle ambiguity
when a process returns multiple options. (see Chapter 6)

• monitors: a monitoring system for understanding the dynamics of experiments and obtaining
scientific measurements (see Chapter 2)

10

http://arti.vub.ac.be/b2dl/
http://fcg-net.org
http://arti.vub.ac.be/b2dl/

1 Introduction 11

• web-interface: a web interface for visualizations (Section ??)

• utils: a collection of general utilities (see Chapter 3)

• test-framework : unit tests for Babel2 components and experiments (Chapter 8)

libraries contains external libraries needed to run Babel2.

experiments contains the actual experiments. The reason to do them within Babel2 itself is the
need for tight integration between the Babel2 core components and the experiments as well as the
opportunity for sharing ideas and technological advancements between Babel2 users.

Our actual experiments are not part of the Babel2 release.

sharing contains other technologies such as networks, rule dependencies, interfaces to robots or
databases, specific learning operators, etc. are in this folder. These building blocks complement
the core technologies found in the systems folder when setting up experiments.

examples is a collection of didactic demonstrations and tutorials that illustrate how components
of Babel2 can be used. We will list a few of them in the remainder of this document.

2 Utilities

The systems/utils/ folder contains a big variety of functions that were at some point considered
useful in one or the other way (and many of them are frequently used). Here we will not list all of
them but describe a few concepts found in the :utils system.

2.1 Copying Objects

Alternative hypothesis are processed in parallel. As for each alternative the agent’s state will
deviate from the state at the branching point, a distinct copy of the relevant state is maintained
for each branch. To facilitate custom, experiment specific implementations of parts of the state,
a generic copy interface is provided which should be implemented for each new data type that
represents some dynamic part of the agent’s state.

2.1.1 generic function copy-object object

description Returns a copy of an object. Although this is the method that is called by
the FCG framework to copy stu↵, you will normally not implement this
function but copy-object-content (see below) for your classes.

object The thing to copy.

default
implementation

There are default implementations for atomic objects such as numbers
and symbols that just return the value. Strings are copied with copy-seq.
There is a default implementation for lists that calls copy-object on
every element of the list and collects the results.

There is an implementation for (object t) that creates an instance of the
class of object and calls copy-object-content to fill that new instance
with the contents of object:
(defmethod copy-object ((object t))

(let ((copy (make-instance (class-of object))))
(copy-object-content object copy)
copy))

2.1.2 generic function copy-object-content source destination

12

2 Utilities 13

description The function that is called by copy-object to do the work of copying
the contents of source to destination. There are implementations for
nearly all classes that are part of the FCG framework. If you add a new
class and for example want to use that class as a part of a task, you will
have to implement this method.

It is up to the developer to decide what is copied and what not. Normally
it is assumed that copy-object returns a deep copy but this might often
be less e�cient.

source The object to copy.

destination The object to fill. Normally a newly created instance of the class of source.

example (defmethod copy-object-content ((source rule-set)
(destination rule-set))

(setf (slot-value destination ’type) (rule-set-type source))
(setf (rules destination) (copy-list (rules source)))
(setf (left-bins destination)

(mapcar #’copy-seq (left-bins source)))
(setf (right-bins destination)

(mapcar #’copy-seq (right-bins source))))

method combination This generic function uses the custom method combination
call-all-applicable-methods. When copy-object-content is
called, not only the most specific applicable method but all applicable
methods are called:
(define-method-combination call-all-applicable-methods ()

((methods () :required t))
‘(progn ,@(loop for method in methods

collect ‘(call-method ,method))))

This is very useful in such a case:
(defclass A () ((a :accessor a :initarg :a)))
(defclass B () ((b :accessor b :initarg :b)))
(defclass C (A B) ())

(defmethod copy-object-content ((source A) (destination A))
(print "copy slots of class A")
(setf (a destination) (copy-object (a source))))

(defmethod copy-object-content ((source B) (destination B))
(print "copy slots of class B")
(setf (b destination) (copy-object (b source))))

(copy-object object)

2 Utilities 14

The ouput is:
"copy slots of class A"
"copy slots of class B"

The standard method combination only would have called the
copy-object-content method for class A (the first super class of C).

2.2 Blackboards

Cognitive processes in the Babel framework share their data using a blackboard architecture.

2.2.1 structure blackboard

description A “blackboard” is a set of “labeled” data “fields”. Such a field could be a
rule set, an utterance, a meaning, etc.

slot data-fields (data-fields :type list :initform nil)

An association list consisting of (label . value) pairs.

copying blackboards Blackboards are copied by calling copy-object (see section 2.1.1) on ev-
ery field value. So you have to make sure that the copy-object-content
method is implemented for all the classes that you store in a blackboard.

2.2.2 generic function fields blackboard

description/ default
implementation

Returns a list containing the field labels of all fields of a blackboard.

blackboard A blackboard instance.

2.2.3 generic function field? blackboard label

description/ default
implementation

Whether a field exists in blackboard. Returns two values. The first one
returns t only when there is a field with the given label in the blackboard.
The second one returns t if the first one is t and if there is a non-nil value
attached to the field.

blackboard A blackboard instance.

label A symbol that labels the field.

2.2.4 generic function add-data-field blackboard label initial-value

description/ default
implementation

Adds a data field to a blackboard. This has to be done explicitly before a
field can be read or written. Additionally, you will get an error if the field
is already present in the blackboard.

2 Utilities 15

blackboard A blackboard instance.

label A symbol that labels the field.

initial-value A initial value for that field.

example (add-data-field *my-task* ’topic nil)

2.2.5 generic function get-data blackboard label

description/ default
implementation

Returns the value of a data field for a given label. Throws an error if the
field does not exist.

blackboard A blackboard instance.

label The data field.

2.2.6 generic function find-data blackboard label

description/ default
implementation

Returns the value of a data field for a given label. Does not throw an error
but just returns nil if the entry is not found.

blackboard A blackboard instance.

label The data field.

2.2.7 generic function set-data blackboard label data

description/ default
implementation

Writes some data to a data field. Throws an error if the field does not
exist.

blackboard A blackboard instance.

label The data field.

data A new value for that field.

2.2.8 generic function remove-data blackboard label

description/ default
implementation

Removes both the data and the data-field from the blackboard.

blackboard A blackboard instance.

label The data field.

2 Utilities 16

2.3 Trees

We provide very basic abstractions for creating and maintaining tree-like datastructures.

2.3.1 structure node

description A node contains a parent (which is again a node) and children which is a
list of nodes.

slot parent (parent nil)

Contains the parent of this node. If it is the top of the tree it contains the
dummy-top-node (see below).

slot children (children nil :type list)

A list of children of this node. Of course this can be nil if it is a leaf.

2.3.2 structure dummy-top-node

description A dummy data-type to be able to check for the root (top) of the tree. The
actual top has this as parent.

2.3.3 structure mtree

description The actual tree abstraction. Contains all of the nodes and a reference to
the actual root.

slot nodes (nodes nil :type list)

A list of nodes containing all nodes of the tree.

slot top (top (make-dummy-top-node) :type node)

The actual root (or top) of the tree. Although it is initialised as dummy-
top-node it should become the actual root as soon as one node is added.

2.3.4 generic function has-parent? node

description/ default
implementation

Returns true if there is a parent which is not the dummy-top-node.

node A node.

2.3.5 generic function traverse mtree func &key from

description/ default
implementation

Traverses the mtree in a depth-first fashion calling func on every node. If
from is given (which should be a node in the tree) it will not start from
the top but will start from that node.

mtree A tree.

2 Utilities 17

func A function which takes one parameter which has to be a node.

from A node from which to start. If not given the top of the tree is taken.

2.3.6 generic function leaf? node

description/ default
implementation

Returns true if the node is a leaf, which simply means it has no children.

node A node.

2.3.7 generic function top? node

description/ default
implementation

Returns true if the node is the top of a tree, which simply means it has
dummy-top-node as parent.

node A node.

2.3.8 generic function leafs mtree

description/ default
implementation

Returns a list of all leafs of the tree. This is thus that subset of the nodes
that have no children.

tree A tree.

2.3.9 generic function add-node mtree node &key parent

description/ default
implementation

Adds the given node to the tree. Although it can only do so as a leaf. So
it cannot add a node in the middle of the tree or at the top if there already
is a top. Therefore you have to supply :parent when this is not the first
node added to the tree. The parent has to be valid.

tree A tree.

node The new node that shoud be added to the tree.

parent The node in the tree to which you wish to hang the new node.

2.3.10 generic function replace-node mtree old-node new-node

description/ default
implementation

replaces the old node with the new node. It can only replace leaf. Of
course the old-node has to be found in the tree.

tree A tree.

old-node The old node to be replaced.

new-node The node that should replace the old one.

2 Utilities 18

2.3.11 generic function depth node

description/ default
implementation

Returns the depth of the given node in the tree from which it is part. It
is not required to pass the tree itself.

node The node form which you wish to know its depth.

3 Monitoring Experiments

The Babel framework contains extensive monitoring and debugging mechanisms that help devel-
opers and users to

• print comprehensible traces of the execution of specific components on the screen (e.g. process
execution, learning framework, games ...),

• raise warnings or take other actions when specific events happen,

• record and store arbitrary numeric and non-numeric values for each interaction,

• print these data to the screen or write them to a file

• plot these data in real-time using gnuplot or generate graphs o✏ine.

This chapter describes the general monitoring mechanisms, the built-in monitors classes that come
with the monitor system, and helps you to use monitors for your own experiments. The monitoring
system is defined in directory systems/monitors.

3.1 Events, Monitors and Notfications

The main motivation for implementing the monitor system was to separate the source code that
does something (running an experiment, running a production task, repairing something, etc) from
source code for debugging and data collection. Thereto, a set of “monitors” that subscribe to a
set of “events” are defined. In some source code that does something, the monitoring system is
“notified” for a specific event. The “active” monitors “handle” that event. Here is an example:

(in-package :monitors)

(define-event run-test-finished (result number))

(defun run-test ()
(let ((result (random 10)))
;; do something
(notify run-test-finished result)
result))

(define-monitor print-test-result :documentation "prints the result of run-test")

(define-event-handler (print-test-result run-test-finished)
(format t "~%run-test finished. Result: ~a" result))

19

3 Monitoring Experiments 20

The function run-test does something, amongst other things calculating the variable result.
Let’s assume a developer wants to print the result of function run-test whenever it finishes.
There is an event run-test-finished defined. At the end of function run-test, the monitoring
system is notified on that event, passing the value of variable result as a parameter. Then there
is the definition of monitor print-test-result, together with an event handler that handles the
event for that monitor by printing the result. However, if you run run-test like it is, nothing will
happen. The monitor needs to be activated:

(activate-monitor print-test-result)

Only active monitors get notified on their events. This helps you in deciding which information to
print, record, plot etc. In this case, the monitor will print:

MONITORS> (run-test)

run-test finished. Result: 6

This seems to be a lot of code to just print the result of function run-test. However, you could
easily add more monitors that handle the same event:

(define-monitor warn-when-test-result-is-7
:documentation "warns when function run-test returns 7")

(define-event-handler (warn-when-test-result-is-7 run-test-finished)
(when (= result 7) (warn "function run-test returned 7!!!!")))

Or there could be another monitor that plots the result of run-test in a graph. The benefit of
using the monitor system is that you do not clutter up your functions with code that does not
contribute to the computation of the function’s result. Despite that, you get a lot of things “for
free”, as you will see in the remainder of this chapter.

The rest of this section describes the macros that define events and monitors, that notify on events,
and that activate monitors. If you are interested in the classes and methods that these macros are
based on, then you might want to read section 3.3 first.

3.1.1 macro define-event id &rest parameters

description Defines an event. This needs to be done before any notification or handler
on that event can be defined. Typically, such a definition is put directly
before the definition of the function that notifies on that event.

id The id for that event. A symbol.

parameters The parameters with that the event is notified. These are lists with a
variable name and the type of the parameter. This information is used to
check that you pass the right values with a notification. In a handler you
can rely on the passed parameters being of these types.

3 Monitoring Experiments 21

example (define-event game-finished (result symbol)
(speaker fcg-agent) (hearer fcg-agent))

There could be a notification for this event at the end of a game. The
first parameter would have to be a symbol and the other two instances of
(derivates of) fcg-agent.

3.1.2 macro define-monitor id &key class

description Defines a monitor. This should happen before any event handlers for that
monitor are defined. Typically, monitors and their handlers are in the
same source file.

id An id for the monitor. Typically starts with a verb describing the purpose
of the monitor, e.g. print-, trace-, record-, plot- etc.

:class The name of the monitor class. As it will be explained in the next
section 3.2, there is a big variety of monitor subclasses. The macro
define-monitor is used to instantiate all of them. If :class is not pro-
vided, the monitor base class monitor is used.

:documentation This should be a short text that helps other users to guess what the monitor
does.

other keyword
parameters

Depending on :class, other keyword parameters are allowed. These are
described in detail in section 3.2.

example (define-monitor print-game-result
:documentation "prints the result of a game")

This defines a monitor based on class monitor (because no :class pa-
rameter was provided).

3.1.3 macro define-event-handler (monitor-id event-id) &body body

description Installs a method that handles a specific event for a monitor (or a list of
monitors).

monitor-id The id of the monitor that handles the event. Can be also a list of multiple
monitor ids. The event is then handled in the same way for these monitors.

event-id The event to handle.

body An expression that handles the event. You can access the parameters using
the variable names from the event definition. If you don’t know the event
parameters, use function print-all-monitors to get the definition. The
monitor instance can be accessed using the variable monitor (see also the
example below).

3 Monitoring Experiments 22

example (define-event-handler (print-game-result game-finished)
(format t "~%Game finished. Result: ~a" result))

In the background, this method will be created:
(defmethod handle-game-finished-event

((monitor monitor) (monitor-id (eql ’print-game-result))
(event-id (eql ’game-finished)) (result symbol)
(speaker fcg-agent) (hearer fcg-agent))

(format t "~%Game finished. result: ~a" result))

This basically makes a method that uses all the parameters of the event
definition as method parameters.

3.1.4 macro notify event-id &rest parameters

description Notifies the monitor system that an event happened. For all monitors that
can handle the event and that are active, the event handler is called. The
order in which the handlers are called is not specified.

id The id of the event

parameters Values for parameters of the event. These need to be as specified in the
definition of the event. You will get an error if you pass the wrong number
of parameters or if the passed values don’t match the parameter types of
the event definition.

example (defun run-game ()
;; ... do something
(notify game-finished result speaker hearer))

Don’t hesitate to use notify statements in even time-critical code. As
you can see below in the macro expansion, it only loops over the active
monitors of an event and calls the corresponding handler methods. When
there are no active monitors for that event, nothing happens. Please refer
to section 3.3 for more details.
(dolist (monitor-id (active-monitors (get-event ’game-finished)))

(let ((monitor (get-monitor monitor-id)))
(handle-game-finished-event monitor monitor-id
’game-finished result speaker hearer)))

3.1.5 macro activate-monitor id &optional active

description Activates a monitor.

id The id of the monitor.

active Defaults to t. When nil, the monitor is deactivated. This can be used to
write functions that activate/ deactivate a set of monitors together.

3.1.6 macro deactivate-monitor id

3 Monitoring Experiments 23

description Deactivates a monitor.

id The id of the monitor.

3.1.7 macro toggle-monitor id

description Toggles (inverses) the activation of a monitor.

id The id of the monitor.

3.1.8 macro toggle-monitors &rest ids

description Toggles (inverses) the activation of a list of monitors.

ids A list of monitor ids

3.1.9 macro print-all-monitors

description Prints for all defined monitors their type, wether they are active, the doc-
umentation and the source file they are defined in (if possible).

3.1.10 macro print-all-events

description Prints for all defined events the parameter list and the source file they are
defined in (if possible).

3.1.11 Pre-defined Events

The monitoring system is designed to monitor experiments. Many of the built-in monitor classes
do something at the end of interactions, series, or batches (see section 4.2.3). For example updating
a plot, writing data to a file or printing something to the screen. They “know” that for example
an interaction finished because the experiment framework notifies on these built-in events (section
4.2.3):

3.1.11.1monitor event interaction-started (experiment t)

description Notified at the beginning of an interaction.

experiment The current experiment (contains the interaction number). The type in
this definition is t is because the class experiment is not known yet in
the context of the monitor system.

3.1.11.2monitor event interaction-finished (experiment t) (interaction-number fixnum)

3 Monitoring Experiments 24

description Triggered after each interaction.

experiment The current experiment.

interaction-number The current interaction number of the experiment.

3.1.11.3monitor event series-finished (series-number fixnum)

description At the end of a series.

series-number The number of the finished series (starting from 1).

3.1.11.4monitor event batch-finished (experiment-class string

description Notifies that a batch finished.

experiment-class The name of the experiment class.

3.1.11.5monitor event reset-monitors

explanation You can notify on this event in order to reset the monitor system.

These events are also very handy to define event handlers for your own monitors. For example
with the event interaction-finished you get the experiment as a parameter and can record
some measures of the rule-sets of the agents of your population.

3.2 Built-in Monitor Classes

You will rarely define monitors of the base class monitor. Instead, you would choose one of the
built-in classes that provide a big variety of additional functionalities. Or one of the classes that
you defined yourself (see section 3.3.3). Figure ?? gives an overview over the hierarchy of built-in
monitor classes.

The rest of this section describes how to use them. Although the di↵erent kinds are referred to
with their class name, the slots of these classes are not described here (you normally also don’t
get in touch with instances of monitors), as monitors of all classes have to be defined with the
define-monitor macro (see previous section).

3.2.1 Printing Program Traces

The most common debugging technique when programming lisp is to add format statements to the
functions and comment them out when they are not needed anymore. However, this can become
quite cumbersome if you want to print di↵erent stu↵ in di↵erent situations. The built in “trace

3 Monitoring Experiments 25

monitor

trace-monitor

data-recorder

data-handler data-printer

gnuplotter

gnuplot-
display

gnuplot-raw-
data-writer

gnuplot-
graphic-
generator

data-file-writer

lisp-data-
file-writer

text-data-
file-writer

alist-
gnuplotter

alist-gnuplot-
graphic-
generator

alist-gnuplot-
display

alist-handler

alist-recorder

alist-printer

Figure 3.1: The class hierarchy of the built-in monitor classes

monitors” allow you to toggle printing of information by toggling monitor activation. Additionally,
they can bu↵er text messages and print them later on demand.

3.2.1.1 monitor class trace-monitor monitor

description A monitor for printing text messages to the screen. It is also able to bu↵er
the text (see below).

example (define-monitor trace-run-test :class ’trace-monitor
:documentation "Traces the execution of run-test.")

message handlers In message handlers, use the method (monitor-stream monitor) as the
stream to write the text message to. This makes it possible to bu↵er the
messages.
(define-event-handler (trace-run-test run-test-finished)

(format (monitor-stream monitor)
"~%run-test finished. Result: ~a" result))

3 Monitoring Experiments 26

3.2.1.2 function activate-bu↵ering-of-trace-monitors

description Switches on bu↵ering. Messages for trace monitors are not printed imme-
diately anymore. Instead, they are kept in a bu↵er (and can be printed
later).
This handy feature makes it possible to get to a lot of di↵erent traces
after something happened without having to print them to the screen
beforehand.

example MONITORS> (activate-buffering-of-trace-monitors)
NIL
MONITORS> (progn (run-test) (run-test))
NIL
MONITORS> (print-buffered-messages-of-trace-monitors)

in the middle of run-test!
run-test finished. Result: 7
in the middle of run-test!
run-test finished. Result: 9

NIL

(for the printing of bu↵ered messages see below)

3.2.1.3 function print-bu↵ered-messages-of-trace-monitors

description Prints all the bu↵ered messages of all trace monitors.

3.2.1.4 function clear-trace-monitors-bu↵er

description Clears the bu↵er for the trace monitors. Does not change activation state.
In order to avoid the bu↵er to become very large, it is recommended to
call this function often, for example before each interaction.

3.2.1.5 macro deactivate-bu↵ering-of-trace-monitors

description Deactivates the bu↵ering for trace monitors.

3.2.1.6 generic function print-with-overline monitor character message

description/ default
implementation

Prints a text message in a trace monitor with an overline of the same
length as the message (see example below).

monitor An instance of trace-monitor.

character The character to use for printing the overline.

message The message itself. Should not contain line breaks.

3 Monitoring Experiments 27

example (define-event-handler (trace-language-game interaction-started)
(print-with-overline monitor #\=

(format nil "= Started interaction ~a."
(interaction-number experiment))))

The resulting output:
=========================
= Started interaction 28.

3.2.2 Recording Data

One of the purposes of running experiments is to output quantitative measures for the emergence
of some feature of language, occurrences of some event, properties of the population, and so on.
These measures could be plotted to a graph, written to a data file or printed to the screen. One
such a measure could be for example communicative success.

To avoid that all plotting, data-writing and printing monitors which want to output communicative
success have to collect that measure for themselves, there is the separation of monitors that record
data (class data-recorder, this section) and monitors that output these recorded data (next
sections 3.2.3 and 3.2.4). For example there is only one monitor that records the communicative
success. All monitors that output communicative success in some way use the recorded data of
that monitor.

3.2.2.1 monitor class data-recorder monitor

description A monitor that records a single value for each interaction. If you run a
batch of series, it also keeps the values of each series. For example after a
(run-batch my-experiment 100 3), the monitor will have recorded 100
⇥ 3 values. The values are recorded from message handlers (see below).
If the recorded values are numerical, then the data recorder also stores
values that are averaged over a window.

example (define-monitor record-success
:class ’data-recorder :default-value 0 :average-window 100
:documentation "records whether the game was a success")

:default-value The default value to record. Default: 0. If the data recorder did not
receive any other value during an interaction, this value will be recorded.

:average-window The average values will be computed as the arithmetic mean of the last
:average-window values. Default: 100. The computation is fast as it
does a recursive update after 2 ⇥ :average-window interactions.

3 Monitoring Experiments 28

recording values Values are recorded from message handlers. An example:
(define-event-handler (record-success game-finished)

(if (eql result ’succeed)
(record-value monitor 1)
(record-value monitor 0)))

In the handler, the function record-value is used to get the next value
into the data recorder. If this function is called multiple times within an
interaction, only the last recorded value is stored.
Alternatively, you can use incf-value when you want to sum the values
of several events during one interaction:
(define-event-handler (some-monitor some-event)

(incf-value monitor some-value))

3.2.3 Outputting Recorded Data

All monitors that somehow output data recorded by data recorders are derived from this class:

3.2.3.1 monitor class data-handler monitor

description An abstract class that provides functionality to access data of data
recorders.

example (m:define-monitor my-data-handler :class ’data-handler
:data-sources ’(record-utterance

(average record-success)
record-number-of-lex-stem-rules))

This monitor will output the recorded values of the
data recorders record-utterance, record-success and
record-number-of-lex-stem-rules.

However, it will not make sense to define a monitor of class data-handler,
as it does not output anything. You will rather use one of the derived
classes from below or the next section.

:data-sources A list of data recorder ids. These have to be defined before a data-handler
on them can be defined. If you want to access the averaged values of a data
recorder, you write (average monitor-id), as in the example above.

activation When you activate any monitor that is derived from data-handler, all
the data recorders that are specified in :data-sources will automatically
become activated.

3.2.3.2 monitor class data-printer data-handler

description A monitor for printing recorded data to the screen.

3 Monitoring Experiments 29

example (m:define-monitor my-experiment-printer :class ’data-printer
:data-sources ’(record-utterance

(average record-success)
record-number-of-lex-stem-rules))

:format-string "~%~d: ~30a ~,2f ~,2f"
:interval 50)

This monitor prints the interaction number, the utterance, the average
communicative success and the lexicon size to the screen:
MY-EXPERIMENT> (run-interactions 500 :reset t)

50: (fulele napimu xifibu) 0.08 13.00
100: (monalu) 0.10 20.60
150: (sopogo) 0.12 26.40
200: (zaradu fulele) 0.19 32.20
250: (fenowu foxapu) 0.43 35.20
300: (vazoro kesoku) 0.64 38.40
350: (wunoze) 0.75 40.20
400: (raneni napimu) 0.81 42.20
450: (giwene xifibu) 0.83 43.40

:data-sources See section 3.2.3.1.

:format-string A format string as in format. The first argument to it is the interaction
number. The other arguments are the current values of the data recorders
a specified in :data-sources.

:interval How often the information is printed. Default: 1.

3.2.3.3 monitor class data-file-writer data-handler

description An abstract class for writing recorded data to a file. You can not define
monitors of this class. See the two derived classes below instead.

3.2.3.4 monitor class text-data-file-writer data-file-writer

description Writes recorded data in columns to a text file, which can be imported for
example in Excel. For each data source there is for each series a separate
column.

3 Monitoring Experiments 30

example (define-monitor write-success-and-lexicon-size-to-file
:class ’text-data-file-writer
:data-sources ’((average record-success)

record-number-of-lex-stem-rules)
:file-name (make-pathname :directory ’(:absolute "tmp")

:name "success-and-lexicon"
:type "dat")

:add-time-and-experiment-to-file-name t
:column-separator " "
:comment-string "#")

The text file is written at the end of a batch:
MY-EXPERIMENT> (run-batch 500 3)

monitor write-success-and-lexicon-size-to-file:
wrote /tmp/2007-03-29-16-25-naming-game-success-and-lexicon.dat

NIL

The generated file /tmp/2007-03-29-16-25-naming-game-succes-and-

lexicon.dat looks like this:
This file was created by the
text-data-file-writer WRITE-SUCCESS-AND-LEXICON-SIZE-TO-FILE.
The columns are:
interaction number
RECORD-SUCCESS-0
RECORD-SUCCESS-1
RECORD-SUCCESS-2
RECORD-NUMBER-OF-LEX-STEM-RULES-0
RECORD-NUMBER-OF-LEX-STEM-RULES-1
RECORD-NUMBER-OF-LEX-STEM-RULES-2
0.0 0.0 0.0 0.0 0.4 0.4 0.4
1.0 0.0 0.0 0.0 0.4 0.8 0.8
2.0 0.0 0.0 0.0 0.8 1.2 1.2

. . .
498.0 0.9 0.92 0.88 42.8 39.6 47.2
499.0 0.9 0.92 0.88 42.8 39.6 47.2
500.0 0.9 0.92 0.89 42.8 39.6 47.2

:data-sources See section 3.2.3.1.

:file-name The name of the file to generate. Should be a pathname.

add-time-and-
experiment-to-

file-name

When t (default), the current date and time as well as the name of the
experiment class are added to the file name.

:column-separator The string to separate values. Default: " ".

:comment-string How to start comment lines. Default: "#".

3.2.3.5 monitor class lisp-data-file-writer data-file-writer

3 Monitoring Experiments 31

description Writes the recorded data as a single s-expression to a file. This can be
handy if you later want to read the data back to lisp.

example (define-monitor write-success-and-lexicon-size-to-file
:class ’lisp-data-file-writer
:data-sources ’((average record-success)

record-number-of-lex-stem-rules)
:file-name (make-pathname :directory ’(:absolute "tmp")

:name "success-and-lexicon"
:type "lisp")

:add-time-and-experiment-to-file-name nil)

The resulting text file can be read back with
(with-open-file (stream #P"/tmp/success-and-lexicon.lisp")

(defparameter data (read stream)))

:data-sources See section 3.2.3.1.

:file-name The name of the file to generate. Should be a pathname.

add-time-and-
experiment-to-

file-name

See section 3.2.3.1.

3.2.4 Plotting Data with Gnuplot

The probably most prominent feature of the monitoring system is to produce graphs from recorded
data using gnuplot.

3.2.4.1 monitor class gnuplotter data-handler

description An abstract class for plotting data with gnuplot. Classes that derive from
this one define how the resulting graph is displayed or written.

example (define-monitor plot-success-and-lexicon-size
:class ’CLASS-DERIVED-FROM-GNUPLOTTER
:data-sources ’((average record-communicative-success)

record-average-number-of-words)
:caption ’("communicative success" "lexicon size")
:minimum-number-of-data-points 500
:x-label "number of interactions"
:y1-label "communicative success"
:y2-label "lexicon size"
:error-bars t :draw-y1-grid nil
:line-width 2
:use-y-axis ’(1 2)
:y1-max 1 :y1-min 0
:y2-min 0 :y2-max nil
:colors *great-gnuplot-colors*
:key-location "right bottom")

3 Monitoring Experiments 32

Figure 3.2: An example for a real-time plot with a gnuplot-display monitor

Depending on what class CLASS-DERIVED-FROM-GNUPLOTTER is, the result
might look as in figure 3.2 or figure 3.3.

:data-sources See section 3.2.3.1.

:caption Captions for each data source for generating a graph legend. Should be
list of strings with one caption per data source. When no captions are
provided, the names of the data recorders are used.

:minimum-number-
of-data-points

The “sample rate”. For at least that many points on the x-axis there
will be a value plotted. Smaller numbers here result in higher speed and
smaller graphic files, bigger numbers give a higher resolution. Default:
500.

:x-label
:y1-label
:y2-label

Labels for the x-axis, left y-axis and right y-axis. Default: nil.

:error-bars When t, error bars are added to the graph. Default: nil.

:draw-y1-grid
:draw-y2-grid

When t, thin horizontal lines are drawn at the ticks of the left or right
axis. Default: nil.

:line-width The width of the lines for curves and errorbars. Default: 2.

:use-y-axis A list of values 1 or 2 for each data source specifying whether to scale the
data with the left y-axis (1) or the right (2). Default: scale all with the
left y-axis.

3 Monitoring Experiments 33

:y1-min :y1-max
:y2-min :y2-max

Minimum and maximum values for the left and right y-axis. When not
provided, the data is automatically scaled to fit (which is often better).

:colored Whether the graph uses colors for di↵erent data lines nor not (only has
e↵ect on some gnuplot terminals). Default t.

:colors A list of colors (list of strings, e.g. ’("red", "green")) to be used by the
di↵erent graph lines. Defaults to *great-gnuplot-colors*.

:key-location Where to put the graph legend. Possible values are for example "off" (for
no legend) "below", "top right", etc. For more information, type "help
set key" into gnuplot. Default: "below".

3.2.4.2 monitor class gnuplot-display gnuplotter

description Plots the data in real-time into a window using gnuplot.

This requires the proper installation of a recent version of gnuplot and a
configuration of your lisp environment so that it can find gnuplot. You can
test whether your lisp/gnuplot integration works by loading the :utils
asdf system and evaluating:
(utils:with-open-pipe

(stream (utils:pipe-output "gnuplot" :args ’("-persist")))
(format stream "plot sin(x)")
(finish-output stream))

This should open a window that shows a sinus plot.

example (define-monitor display-success-and-lexicon-size
:class ’gnuplot-display
:documentation "Shows communicative success and lexicon size."
:data-sources ’((average record-communicative-success)

record-average-number-of-words)
:caption ’("communicative success" "lexicon size")
:x-label "number of interactions"
:y1-label "communicative success" :y2-label "lexicon size"
:error-bars t :use-y-axis ’(1 2)
:y1-max 1 :y1-min 0 :y2-min 0 :key-location "right bottom")

When activating this monitor and for example running (run-batch 2500
5) a plot window such as in figure 3.2 will be updated every 50 interac-
tions.

:update-interval How often the graph display will be updated. The smaller the value, the
slower the whole thing. Default: 10 (very slow).

All other parameters are the same as in section 3.2.4.1.

3.2.4.3 monitor class gnuplot-graphic-generator gnuplotter

3 Monitoring Experiments 34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000
 0

 5

 10

 15

 20

 25

co
m

m
un

ic
at

iv
e

su
cc

es
s

le
xi

co
n

si
ze

number of interactions

communicative success
lexicon size

Figure 3.3: An example for a plot generated by a gnuplot-graphic-generator monitor

description Produces a graph file at the end of a batch. It is recommended
to use such a graph for papers instead of saving the result of
gnuplot-display-monitors, as they produce graphic files of much higher
quality.

example (define-monitor plot-success-and-lexicon-size
:class ’gnuplot-graphic-generator
:documentation "Plots communicative success and lexicon size"
:graphic-type "pdf"
:colored nil
:add-time-and-experiment-to-file-name nil
:file-name (make-pathname :directory ’(:absolute "tmp")

:name "success-and-lexicon-size"
:type "pdf")

:data-sources ’((average record-communicative-success)
record-average-number-of-words)

:caption ’("communicative success" "lexicon size")
:x-label "number of interactions"
:y1-label "communicative success" :y2-label "lexicon size"
:error-bars t :use-y-axis ’(1 2) :key-location "right bottom"
:y1-max 1 :y1-min 0 :y2-min 0 :draw-y1-grid t)

The resulting file /tmp/success-and-lexicon-size.pdf looks as in figure 3.3.

graphic-type Which gnuplot graphic driver to use. Should be one out of "postscript",
"pdf", "svg" or "gif".

:file-name The file name of the graphic file to produce. Should be a pathname.

3 Monitoring Experiments 35

:add-time-and-
experiment-to-

file-name

See section 3.2.3.4.

All other parameters are the same as in section 3.2.4.1.

3.2.4.4 monitor class gnuplot-display-and-graphic-generator gnuplot-display gnuplot-graphic-

generator

description A monitor that produces a real-time plot and generates a graphic file in
the end.

As it derives from both of these classes, it takes all parameters that
gnuplot-display and gnuplot-graphic-generator take.

3.2.4.5 monitor class gnuplot-file-writer gnuplot-graphic-generator

description If you don’t like the graphs that the gnuplot-graphic-generator makes,
you can also use this monitor to write a complete gnuplot script (with
data and plot commands) and later modify that script. The parameter
:gnuplot-file-name specifies the file name of the script.

3.2.5 Recording and Plotting Lists of Data

Data recorders (section 3.2.2.1) allow to record one single value for each interaction. But sometimes
one wants to look at the evolution of a list of values, for example the scores of some entities or
the number of occurrences of events. Defining a data recorder for each of them would become
cumbersome, especially if the number of values is not known beforehand. For this purpose, there
are monitors for recording and processing lists of data.

3.2.5.1 monitor class alist-recorder monitor

description Records averaged values for lists of (symbol . value) conses. Similar
to a data-recorder (section 3.2.2.1), values are kept for each interaction
of each series of a batch.

example (define-monitor record-lexicon-of-first-agent-for-first-object
:class ’alist-recorder
:documentation "Records for the first agent the scores of all

words for the first object"
:average-window 1)

:average-window The values will be averaged over the last :average-window values. De-
fault: 100.

3 Monitoring Experiments 36

recording values Values are recorded from event handlers. An example:
(define-event-handler

(record-lexicon-of-first-agent-for-first-object
interaction-finished)

(loop with rules
= ;; compute the rules of the first agent that have first
;; object of the world as meaning

for rule in rules
do (set-value-for-symbol monitor

(intern (word rule))
(rule-score rule))))

The function (set-value-for-symbol monitor symbol value) is used
to store the rule score for each rule in the monitor, with symbol being
the interned rule name. Each time you pass a value for a new symbol, a
new list of recorded values is created. If you don’t pass a value for some
symbol during an interaction, the value 0 is recorded. Alternatively, you
can use the function (incf-value-for-symbol monitor symbol value)
to increase the current value for a symbol, starting in each interaction from
0.

3.2.5.2 monitor class alist-handler monitor

description The base class for all monitors that do something with data recorded by
a alist-recorder.

:recorder The id of the alist-recorder to use. That recorder will become auto-
matically activated whenever a monitor derived form alist-handler gets
activated.

3.2.5.3 monitor class alist-printer alist-handler

description Prints the values of an alist recorder after each interaction.

3 Monitoring Experiments 37

example (define-monitor print-lexicon-of-first-agent
:class ’alist-printer
:documentation "Prints for the first agent the scores of all

words for the first object"
:recorder ’record-lexicon-of-first-agent-for-first-object
:interval 100)

When this monitor is active, the output of a batch looks like this:
MY-EXPERIMENT> (run-batch *experiment* 1000 1)

100: vewiba: 0.50; sowape: 0.50;
200: vewiba: 0.50; sowape: 0.50;
300: vewiba: 0.50; sowape: 0.50;
400: vewiba: 0.60; sowape: 0.30;
500: vewiba: 0.80; sowape: 0.00; bofoxa: 0.10;
600: vewiba: 1.00; sowape: 0.00; bofoxa: 0.00; fapofo: 0.10;
700: vewiba: 0.90; sowape: 0.00; bofoxa: 0.00; fapofo: 0.00;
800: vewiba: 0.80; sowape: 0.00; bofoxa: 0.00; fapofo: 0.00;
900: vewiba: 0.90; sowape: 0.00; bofoxa: 0.00; fapofo: 0.00;
1000: vewiba: 0.80; sowape: 0.00; bofoxa: 0.00; fapofo: 0.10;
NIL

:recorder See section 3.2.5.2.

:interval The data is printed only every :interval interactions. Default: 1.

3.2.5.4 monitor class alist-gnuplotter alist-handler

description The base class for plotting data recorded by an alist-recorder with
gnuplot.

example (define-monitor plot-all-words-for-first-object
:class ’CLASS-DERIVED-FROM-ALIST-GNUPLOTTER
:documentation "Plots scores of all words for the first object"
:recorder ’record-all-words-for-first-object
:minimum-number-of-data-points 500
:error-bars nil
:key-location "below"
:y-min 0 :y-max 1.05 :draw-y-grid t
:y-label nil x-label nil
:line-width 1 :draw-y-grid t
:colors ’("red" "blue" "black" "green" "gold"))

Depending on what CLASS-DERIVED-FROM-ALIST-GNUPLOTTER is, the re-
sult might look like in figure 3.4 or figure 3.5.

:recorder See section 3.2.5.2.

3 Monitoring Experiments 38

Figure 3.4: An example for a real-time plot with a alist-gnuplot-display monitor

:minimum-number-
of-data-points

:errorbars
:colors

:line-width
:key-location

See section 3.2.4.1

:y-min :y-max The minimum and maximum y values. When not provided, the graph is
automatically scaled (which is often better).

:draw-y-grid When t, thin horizontal lines are drawn at the height of the y ticks.

3.2.5.5 monitor class alist-gnuplot-display alist-gnuplotter

description Displays plots of data recorded by an alist-recorder in real-time.

example (define-monitor display-all-words-for-first-object
:class ’alist-gnuplot-display
:documentation "Plots scores of all words for the first object"
:recorder ’record-all-words-for-first-object
:draw-y-grid t :y-max 1.05 :y-min 0
:update-interval 25)

The resulting graph looks as in figure 3.4.

3 Monitoring Experiments 39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

befapa benodi ragofo boriri gazapu

Figure 3.5: An example for a plot generated by a alist-gnuplot-graphic-generator monitor

:update-interval How often the display is redrawn. Default: 100.

All other parameters are as described in section 3.2.5.4.

3.2.5.6 monitor class alist-gnuplot-graphic-generator alist-gnuplotter

description Produces a graph file at the end of a batch. It is recommended to use such
a graph for papers, as they are black and white.

example (define-monitor plot-all-words-for-first-object
:class ’alist-gnuplot-graphic-generator
:documentation "Plots scores of all words for the first object"
:recorder ’record-all-words-for-first-object
:draw-y-grid t :y-max 1.05 :y-min 0
:file-name (babel-pathname :directory (list "tmp")

:name "lexicon" :type "ps")
:add-time-and-experiment-to-file-name nil
:graphic-type "postscript")

The resulting file /tmp/lexicon.ps looks as in figure 3.5.

3 Monitoring Experiments 40

graphic-type Which gnuplot graphic driver to use. Should be one out of "postscript",
"pdf", "svg" or "gif".

:file-name The file name of the graphic file to produce. Should be a pathname.

:add-time-and-
experiment-to-

file-name

See section 3.2.3.4.

All other parameters are the same as in section 3.2.5.4.

3.2.5.7 monitor class alist-gnuplot-display-and-graphic-generator alist-gnuplot-display alist-

gnuplot-graphic-generator

description A monitor that produces a real-time plot and generates a graphic file in
the end.

As it derives from both of these classes, it takes all parameters
that alist-gnuplot-display and alist-gnuplot-graphic-generator
take.

3.3 Behind the Scenes

As mentioned in the beginning of section 3.2, you will normally not get in touch with the classes
that form the base of the monitor system. Instead, you will use the macros from section 3.1.
However, if you want to define some monitors that do something else than what you can do with
the built-in monitors and if you want to reuse this functionality, you might want to derive your
own monitor classes.

This section describes the monitor, event, and event handling base classes and methods that are
defined in systems/monitors/base.lisp. You can easily skip this section if you are only interested in
using the monitors.

Please note that all the classes and methods are not exported from the :monitors package as they
are “hidden” from the user. It is recommended to put your own classes in that package too.

3.3.1 Classes for Monitors and Events

3.3.1.1 class monitor

description The base class for all monitor classes. Stores the events that a monitor is
subscribed to and whether the monitor is active.

slot id A unique id.

slot event-ids The ids of events that the monitor is “subscribed” to. Technically, these
are all events for that an event handler was defined.

3 Monitoring Experiments 41

slot active If t, then this monitor is notified on its events.

slot documentation A string that helps the user to guess the purpose of the monitor.

slot source-file The file in that the monitor was defined. This is guessed using the LISP
variable *load-pathname*, which not always contains a file name.

slot init-arguments The keyword parameter list with that the monitor was defined. This is
stored in order to be able to redefine a monitor only when its parameters
change.

slot error-occured-
during-

initialization

When t, an error occured during the initialization. This information is
stored for determining when to redefine a monitor.

3.3.1.2 class event

description Represents an event with its parameters and a list of monitors that are
listening to the event.

slot id An unique event id.

slot
active-monitors

A list of the ids of those monitors that subscribed to this event and that
are active.

slot source-file The file in that the event was defined. This is guessed using the LISP
variable *load-pathname*, which not always contains a file name.

slot parameters A list of (name type) parameter definitions, used for method generation.

3.3.1.3 global variable *monitors*

description A hash table containing the instances of all defined monitors. When a
monitor is defined with define-monitor, the instance is automatically
stored there. Due to that, the user does not have to care about keeping
pointers to these instances and it is easier to access a particular monitor,
for example for activating it.

3.3.1.4 global variable *events*

description A hash table containing the instances of all defined events.

3.3.1.5 function get-monitor id

description Returns the monitor instance for an id. Normally you will never do
this but it helps for example when you want to see what kind of data
a data-recorder recorded.

id The id of the monitor.

3 Monitoring Experiments 42

example (monitors::get-monitor ’record-number-of-lex-stem-rules)

3.3.1.6 function get-event id

description Returns the event instance for an id.

id The id of the event.

3.3.2 The Creation of Monitors, Events and Handlers

To prevent the user from being confronted with the classes above and in order to guarantee some
properties of monitors and events, there is a lot of checking going on. In :around methods of
initialize-instance, it is checked for almost every parameter whether the passed values are
correct. You will normally get helpful error messages if you passed something wrong.

For convenience, when a source file is recompiled or reloaded, the state of the contained mon-
itors and events is preserved. For that, monitors copy the state of previous instances in the
initialize-instance :around methods. Additionally, monitors and events are only redefined
when there is no previous instance or when parameters changed:

3.3.2.1 function make-monitor-unless-already-defined id class &optional init-arguments

description Makes a new monitor when there is (1) no previously defined monitor with
the same id, (2) the arguments passed to the monitor (init-arguments)
are di↵erent from a previous monitor with the same id, or (3) an error
occurred during the initialization of the previous monitor.

id The id of the monitor.

class The class to instantiate.

init-arguments All keyword parameters that are needed to make the instance.

3.3.2.2 function subscribe-to-event monitor-id event-id

description Adds an event to the event-ids list of a monitor. When the monitor is
a active, it is also added to the active-monitors slot of the event.

monitor-id The id of the monitor.

event-id The id of the event.

3.3.2.3 function make-event-unless-already-defined id parameters

3 Monitoring Experiments 43

description Makes an event (only when it is not defined yet or when parameters
changed). Additionally, it defines a generic function for handling the event.
For example for event interaction-started, this generic function is gen-
erated, incorporating the passed parameters:
(defgeneric handle-interaction-started-event

(monitor monitor-id event experiment))

There is a default implementation that specializes on t for the parameters
of the event. If you type for example (notify interaction-started
42), then that method will give you this error:
Parameter 2 (EXPERIMENT) should be of type EXPERIMENT.
Instead, 42 (FIXNUM) was passed.

[Condition of type SIMPLE-ERROR]

id The id of the event.

parameters The parameter list.

3.3.2.4 function make-event-handler monitor-id event-id body

description Subscribes a monitor to an event (using subscribe-to-event, section
3.3.2.2) and creates an event handler method.

monitor-id The id of the monitor. Either a symbol or a list of symbols (for defining
multiple handlers at the same time).

event-id The id of the event to handle.

body The body of the handler method (see section 3.1.3).

In order to put events and their handlers into the same source file, the events and monitors have
to be defined at macro expansion time (the macro expansion of the notify macro (section 3.1.4
needs to know the parameters of the event to generate the method call). But as there is no macro
expansion when a compiled file is loaded, the events also have to be defined at load time.

This problem is solved by defining each event and monitor twice:

(defmacro define-event (id &rest parameters)
(make-event-unless-already-defined id parameters)
‘(make-event-unless-already-defined ’,id ’,parameters))

The first line is executed during macro expansion when a source file is compiled. The second line
will be executed as well but does not do anything because the event is already defined. When
loading a compiled file, only the second line was compiled into the code and is executed. The same
thing happens in the define-monitor macro.

3 Monitoring Experiments 44

3.3.3 Defining own Monitor Classes

This section shows how to derive own monitor classes. The existing class trace-monitor (section
3.2.1.1) serves as an example. The first thing to do is to derive an own class from one of the built-in
monitor classes and define some slots that the monitor will need to function (there are no slots
needed in this example):

(defclass trace-monitor (monitor)
()
(:documentation "Prints string messages on a screen or keeps them in a shared buffer

for later retrieval"))

The next thing is to define the initialization of the monitor instance. This typically looks like this:

(defmethod initialize-instance :around ((monitor trace-monitor)
&key id &allow-other-keys)

(let ((previous-monitor (get-monitor id)))
(call-next-method)
(setf (error-occured-during-initialization monitor) t)
(make-event-unless-already-defined id ’((message string)))
(when (or (not previous-monitor)

(error-occured-during-initialization previous-monitor)
(not (find id (event-ids monitor))))

(make-event-handler
id id ‘((unless (equal ,(intern-in-package-of id "MESSAGE") "")

(format (monitor-stream monitor) "~a"
,(intern-in-package-of id "MESSAGE")))))))

(setf (error-occured-during-initialization monitor) nil))

Before the base class is initialized with (call-next-method), a reference to the old monitor instance
is kept in variable previous-monitor. Then, the monitor slot error-occured-during-initialization
is set to t. This is set to false again in the last line. If something goes wrong between these two
lines, the value of that slot remains t so that the next attempt to initialize starts from scratch
again.

Then there is automatically an event defined that has the same name as the monitor and takes
a string as parameter. Only when there is no previous monitor, when there were no errors and
when there is no handler yet for that automatically generated event, an event handler that prints
or bu↵ers the message is defined using the make-event-handler macro.

4 The Experiment Framework

This chapter defines what an “experiment” is in the Babel framework. There is a “population” of
“agents” that engage in “interactions”. An agent is understood as a software entity that interacts
with a “world” (see for example ?) has an internal state, own goals and means to achieve them.
It perceives information from the world and performs “actions” on it. It has ways to diagnose

problems in its information processing and repair strategies to adapt and optimize its state and
processing. Agents can not look into each others brains, which means that they never can access
the internal states of others. Instead, they perform actions such as speaking or pointing that are
observed by the other agents. An experiment itself is a controlled repetition (batch) of series of
such interactions. For each series, measures of the emergent behavior or properties of the agent’s
information processing are recorded.

The experiment framework defines1 the concepts introduced above in a rather abstract way. Specific
kinds of experiments such as di↵erent types of language games are operationalized by subclassing
and implementing generic methods described in this chapter.

4.1 Agents Situated in the World

This section defines agents and their interaction with the world.

4.1.1 Actions Performed on the World

Actions are performed by agents. They can change the state of the world and are observable by
other agents. They can be anything that a robot or a human could do, for example speaking,
pointing, giving, walking, nodding, etc – but rather no telepathic or other supernatural activities.

4.1.1.1 class action

description Represents an action performed by an agent. You define own actions by
subclassing from action.

slot agent-id (agent-id :type (or symbol fixnum) :initform nil :initarg :agent-id
:accessor agent-id)

The id of the agent that does the action. Normally you will not have to
provide this when creating an action because it is set automatically in an
:around method of run-agent (see section 4.1.2.2).

1
See also the source files in directory systems/experiment-framework.

45

4 The Experiment Framework 46

slot recipient-ids (recipient-ids :type list :initform ’(all-agents)
:initarg :recipient-ids :accessor recipient-ids)

The ids of the agents that the action is directed to. By default, the action
is performed to all interacting agents (value ’(all-agents)).

4.1.1.2 class no-action action

description When an agent performs this action it means that it waits for other agents
to do something or that it believes the current interaction to be finished.

4.1.1.3 class world

description The state of the shared world in which the agents are interacting. It is
highly experiment dependent what that is. Normally you will define a
world for your experiment by subclassing from world.

slot actions (actions :type list :initform nil :accessor actions)

All actions that were performed by the agents during the current interac-
tion. Newer actions are first in the list. These are added automatically by
the framework after update-world (see below).

4.1.1.4 generic function initialize-world-for-next-interaction world

description Initializes or updates the state of the world at the beginning of a
new interaction. It is called automatically in an :around method of
run-interaction (see section 4.2.2.3).

world The world to initialize.

default
implementation

The default implementation is empty, because there might be experiments
where the world does not have state except the actions performed by the
agents. In a :before method, the actions slot of the world is set to nil.

4.1.1.5 generic function update-world world action

description Updates the world dependent on the last action of an agent. It is auto-
matically called from run-interaction (see section 4.2.2.3). If in your
experiment the agents perform actions that can change the state of the
world, then you would implement a method for your world and action
class.

world The world to update.

action The action

4 The Experiment Framework 47

Agent 1 Agent 2

run

Agent 3

world

action

initial world state

world state & previous actions
run

action

world state & previous actions
run

action

run
...

...

... etc.

ti
m

e

update

update

update

Figure 4.1: The general scheme of an interaction between agents. All agents that participate in
the interaction are run one after the other, observe the state of the world and the actions that
were performed by the other agents. As a result, they return an action on which again updates the
world. An interaction ends when all agents return the no-action.

default
implementation

The default implementation is empty. This means that actions such as
speaking or nodding do not change the state of the world but are directly
observed by the agents. In an :around method, the action is automati-
cally pushed on the actions slot of the world.

4.1.2 Running Agents

The agents that take part in an interaction are run one after the other to determine their next
action (see figure 4.1).

4.1.2.1 class agent object-with-learning-mechanisms

description The base class for all agents. It inherit slots for learning mechanisms from
base class object-with-learning-mechanisms (see section 4.3).

slot id (id :initarg :id :reader id :type (or symbol fixnum)
:initform (gen-sym))

The id of the agent.

4 The Experiment Framework 48

slot problems (problems :type list :initform nil :initarg :problems
:accessor problems)

All the problems that were encountered during an interaction.

slot list-of-
interacting-agents

(ids-of-interacting-agents :initform nil :type list
:accessor ids-of-interacting-agents)

The ids of all other agents that are part of the current interaction (see
section 4.2.2.1).

4.1.2.2 generic function run-agent agent world

description Plans and performs the next action of an agent. Called by
run-interaction (see section 4.2.2.3).

agent The agent to perform the action.

world The state of the world including the actions performed by the other agents.

default
implementation

The default implementation calls repeatedly
• plan-action (see section 4.1.2.3 below)
• run-agent-diagnostics (see chapter 5)
• and run-agent-repair-strategies (see chapter 5)

in a loop until nothing is repaired anymore by the repair strategies
(run-agent-repair-strategies returns nil). Then the last planned
action is passed to perform-action (see section 4.1.2.5) and the action
returned by that is returned by run-agent.

For example there could be an agent that tries to interpret an utterance.
First plan-action runs an interpretation task that fails and returns two
values, the returned planned action which is a ‘signal failure’ action and
a list of agent level learning situations, e.g. (agent-interpreting). Based
on these learning situations there are learning mechanisms that repair the
agent. Again plan-action is run and this time returns a ‘signal success’
action. This action is passed to perform-action, which commits the
things previously learned and updates its linguistic inventory based on the
communicative success.
In an :around method, there are notifications for the events
run-agent-started and run-agent-finished (sections 4.1.2.6 and
4.1.2.7).

4.1.2.3 generic function plan-action agent world

4 The Experiment Framework 49

description Plans an action for the agent based on the world (which contains the
actions performed by the other agents). Returns an instance of action
and a list of agent level learning situations for that the agent level learning
mechanisms are run.
This function is called from run-agent, which runs learning mechanisms
after it and, if something is repaired, runs plan-action again. So the
action you return here is not necessarily the one that is returned by
run-agent. If you want to do something based on the action that the
agent actually performs, then you can do that in method perform-action
(see below).

agent The agent that is run.

world The world that the agent is situated in.

default
implementation

There is a default implementation that calls
plan-action-based-on-last-action (see below) on the last ac-
tion of the world. However, this might be not a good idea when
there are more than two agents interacting and when actions depend
on more than just the action of the last agent that was run. In this
case you might consider re-implementing this method for your agent class.

4.1.2.4 generic-function plan-action-based-on-last-action agent world last-action

description Returns an action based on a single last action performed by an (the)
other agent. When you use the default implementation of plan-action,
then you have to implement this method for all actions that your agents
can perform. Just as plan-action it also has to return a list of learning
situations as second value.

agent The agent that performs the action.

world The world in that the agent is situated.

last-action The last performed action of a (the) other agent.

4.1.2.5 generic function perform-action agent planned-action

description Called by the default implementation of run-agent on the planned action
after nothing is repaired anymore. Returns an action. This gives you the
chance to do something based on the action that the agent performs.

agent The agent that performs the action.

planned-action The action that was returned by the last call to plan-action.

default-
implementation

The default implementation simply returns the planned-action.

4 The Experiment Framework 50

4.1.2.6 monitor event run-agent-started (agent agent) (world world)

description Triggered at the begin of run-agent.

agent The agent that is run.

world The world in the agent is situated.

4.1.2.7 monitor event run-agent-finished (agent agent) (world world) (action action)

description Notified at the end of run-agent.

agent The agent that performed an action.

world The world (not yet updated on the action).

action The performed action.

4.1.2.8 generic function initialize-interaction agent

description/ default
implementation

Is called for each of the interacting agents at the begin of an interaction.
For example can be used to initialize the role that an agent takes in the
interaction. The default implementation is empty.

agent The agent to initialize.

4.1.2.9 generic function consolidate-agent agent

description/ default
implementation

Is called for each of the interacting agents at the end of an interaction. It
is intended to be used for committing learned things or updating scores of
inventories. The default implementation is empty.

agent The agent to consolidate.

4.2 Interacting Agents

The main purpose of the experiment framework is to have agents interacting with each other and
learn from that. This section describes how these interactions are defined and run.

4.2.1 Experiments and Populations

Experiments determine how interactions between agents of a population are run.

4.2.1.1 class experiment object-with-learning-mechanisms

4 The Experiment Framework 51

description The base class for all experiments. It also contains learning mechanisms as
it is derived from object-with-learning-mechanisms (see section 4.3).

slot population (population :type list :accessor population)

A list of agents. The population is automatically initialized when the ex-
periment is created (using the generic function initialize-population,
see below).

slot interaction-
number

(interaction-number :type fixnum :initform 0
:accessor interaction-number)

A counter that is increased with every interaction.

slot
interacting-agents

(interacting-agents :type list :initform nil
:accessor interacting-agents)

A list of the agents that are involved in the current interaction. Determined
by function determine-interacting-agents (see section 4.2.2.1).

slot processing-
strategies

(processing-strategies :type t :initform t
:accessor processing-strategies
:initarg :processing-strategies)

An experiment specific object that can be used to specialize methods on
lower levels. These can be methods that you have to implement for your
own experiment. There are also built-in methods that provide multiple
options for some particular processing. By deriving your processing
strategy from

slot world (world :type world :initarg :world :accessor world
:initform (make-instance ’world))

The world that is shared by the agents.

4.2.1.2 generic function initialize-population experiment

description Replaces all agents of an experiment’s population by a new list of agents.
The new list should contain at least one agent. In an :after method, all
learning mechanisms and processing mechanisms of the experiment are
automatically copied into each agent. Additionally, there is a notification
for event population-initialized (see below).

You have to implement this method for your experiment.

example (defclass my-experiment (experiment) ())
(defclass my-agent (agent) ())

(defmethod initialize-population ((experiment my-experiment))
(setf (population experiment)

(loop for n from 1 to 5
collect (make-instance ’my-agent :id n)))

4 The Experiment Framework 52

4.2.1.3 monitor event population-initialized experiment

description Triggered after initialize-population.

experiment The experiment for that the population was initialized.

4.2.2 Running an Interaction

An “interaction” is when some agents are drawn from the population and interact for some time
in a shared world. This could be for example a guessing game where one agent of the population
becomes a speaker, describes a scene to a hearer, the hearer points to a thing in the world, and the
speaker signals the communicative success of the interaction.

4.2.2.1 generic function determine-interacting-agents experiment

description Called at the begin of each interaction to determine which agents (a subset
of the population) will interact with each other. The function has to set
the interacting-agents slot of experiment.

experiment An experiment instance.

default
implementation

The default implementation randomly selects two agents from the popu-
lation of experiment.
In an :around method, the ids-of-interacting-agents slots of
all interacting agents are set properly so that each agent knows
with who it is interacting. There is a notification for event
interacting-agents-determined (see below).

4.2.2.2 monitor event interacting-agents-determined (experiment experiment)

description Triggered at the end of determine-interacting-agents.

experiment The experiment.

4.2.2.3 generic function run-interaction experiment

description The most important function of the experiment framework. Runs one
interaction of an experiment.

experiment The experiment to run.

4 The Experiment Framework 53

default
implementation

It is not recommended to specialize this function for your experiment
class as there is already a sophisticated default implementation for class
experiment itself. The default implementation calls the run-agent
method (see section 4.1.2.2) of the first interacting agent. The returned
action is passed to update-world (section 4.1.1.5). Then the run-agent
method of the next agent is called and so on until no agent returns an
action di↵erent from no-action (section 4.1.1.2). See also figure 4.1.

(defmethod run-interaction ((experiment experiment))
(loop for at-least-one-agent-returned-an-action = nil

do (loop for agent in (interacting-agents experiment)
for action = (run-agent agent (world experiment))
do (unless (typep action ’no-action)

(setf at-least-one-agent-returned-an-action t))
(update-world (world experiment) action))

while at-least-one-agent-returned-an-action))

In an :around method,
• the interaction-number of the experiment is increased,
• there is a notification on the event interaction-started (see sec-

tion 3.1.11.1),
• the method called-before-run-interaction is called (see below),
• determine-interacting-agents experiment is called (see

above),
• for each interacting agent initialize-interaction (section

4.1.2.8) is called,
• the world is initialized with initialize-world (section 4.1.1.4),
• the main method is called,
• for each interacting agent consolidate-agent (section 4.1.2.8) is

called,
• called-after-run-interaction (see below) is called,
• there is a notification for event interaction-finished (see

3.1.11.2).

4.2.2.4 generic function called-before-run-interaction experiment

description The method is called automatically before run-interaction.

experiment The experiment instance.

default
implementation

There is a default implementation that does nothing. You can, but don’t
have to, do additional things here such as initializing variables, interacting
with robots, etc.

Of course you could also write a :before method for run-interaction
(it would be the same), but maybe implementing this method for your
experiment class makes things look more clear.

4 The Experiment Framework 54

4.2.2.5 generic function called-after-run-interaction experiment

description The same as called-before-interaction. except that it is called auto-
matically after run-interaction.

experiment The experiment instance.

4.2.3 Running Experiments

There are three di↵erent levels of running an experiment:

• An interaction, see previous section 4.2.2.

• A “series” is a set of subsequent interactions, possibly with di↵erent agents of the population
participating in the interaction each time.

• A “batch” is a repetition of series with same length. Before each series, the population is
reset. This is enables you to average experimental results over many repetitions.

4.2.3.1 generic function run-series experiment number-of-interactions &key reset

description Runs a series of interactions.

experiment The experiment instance.

number-of-
interactions

How many interactions to run.

:reset Whether to reset the population and the monitors. Default: nil.

default
implementation

The default implementation executes the run-interaction method
number-of-interaction times. When :reset is t, in the beginning it
sets the interaction-number of the experiment to 0, resets the monitors
by notifying on the event reset-monitors (section 3.1.11.5) and calls the
initialize-population method (section 4.2.1.2).

4.2.3.2 generic function run-batch experiment number-of-interactions number-of-series

description Runs a batch (multiple series of interactions).

experiment The experiment instance.

number-of-
interactions

How many interactions to run.

number-of-series How many series to run.

4 The Experiment Framework 55

default
implementation

The default implementation resets the monitors in the beginning. Then it
runs number-of-series times a series of number-of-interactions in-
teractions, each time in the beginning setting the interaction-number
to 0 and resetting the population. After each series, the event
series-finished is triggered. In the end, there is a notification for
batch-finished.

4.2.3.3 monitor trace-interaction trace-monitor

description Prints information about interactions such as the interaction number,
which agent is run and which actions it returned.

4.2.3.4 monitor trace-experiment trace-monitor

description Prints information about the experiment, when the population is reset and
when a series or a batch is finished. Good for observing the progress in
large-scale simulations.

4.3 Learning Mechanisms

Learning mechanisms are deeply grounded into the Babel framework. They consist of three things:

1. “diagnostics” reside on top of cognitive processes and try to detect failures or suboptimal
processing, which they report in the form of

2. “problems”. They contain the information that can be used by

3. “repair strategies” to overcome failures or to optimize information processing.

Since learning is crucially important we have dedicated a chapter to accommodate all there is to
know about learning in the Babel framework. We refer you to chapter 5

4.4 An Interaction Example

This section shows a very minimal experiment without learning mechanisms that illustrates the
concepts described in this chapter. An interaction in this experiment will be that one agent asks
for chocolate, gets chocolate and thanks the other agent for it.

First, we define an experiment class, an agent class and an initialization of the population:

(defclass my-experiment (experiment) ())
(defclass my-agent (agent) ())

(defmethod initialize-population ((experiment my-experiment))
(setf (population experiment)

(loop for i from 1 to 5 collect (make-instance ’my-agent :id i))))

4 The Experiment Framework 56

We use the default implementation of determine-interacting-agents (which randomly selects
two agents of the population). We define the two actions that we need for this interaction:

(defclass give-action (action)
((object :initarg :object :accessor object)))

(defclass speak-action (action)
((utterance :initarg :utterance :accessor utterance)))

Then we implement the plan-action-based-on-last-action methods for my-agent and the
actions above:

(defmethod plan-action-based-on-last-action ((agent my-agent) (world world)
(last-action (eql nil)))

(make-instance ’speak-action :utterance "Want chocolate!"))

(defmethod plan-action-based-on-last-action ((agent my-agent) (world world)
(last-action speak-action))

(if (string-equal (utterance last-action) "Want chocolate!")
(make-instance ’give-action :object ’chocolate

:recipient-ids (list (first (ids-of-interacting-agents agent))))
(make-instance ’no-action)))

(defmethod plan-action-based-on-last-action ((agent my-agent) (world world)
(last-action give-action))

(make-instance ’speak-action :utterance "Thank you!"))

(defmethod plan-action-based-on-last-action ((agent my-agent) (world world)
(last-action no-action))

(make-instance ’no-action))

The first plan-action-based-on-last-action method above is run at the begin of an interaction
(there are no last actions). The agent that is run first says “want chocolate”. Then the next agent
is run. If it hears “want chocolate!”, then it gives chocolate to the other agent. An agent that gets
chocolate says “Thank you!”. Whenever the other agent did nothing, an agent also does nothing.

This makes an instance of the experiment:

(defparameter *experiment* (make-instance ’my-experiment))

To see some output, we activate the monitor trace-interaction and then run one interaction:

(activate-monitor trace-interaction)

(run-interaction *experiment*)

This is the output:

========================
= Started interaction 1.
= Interacting agents: (<my-agent 3> <my-agent 4>)
=======================

4 The Experiment Framework 57

= Running <my-agent 3>.
= <my-agent 3> performs

<speak-action: utterance: "Want chocolate!"
<action: agent-id: 3, recipient-ids: (ALL-AGENTS)>>.

=======================
= Running <my-agent 4>.
= <my-agent 4> performs

<give-action: object: CHOCOLATE <action: agent-id: 4, recipient-ids: (3)>>.
=======================
= Running <my-agent 3>.
= <my-agent 3> performs

<speak-action: utterance: "Thank you!"
<action: agent-id: 3, recipient-ids: (ALL-AGENTS)>>.

=======================
= Running <my-agent 4>.
= <my-agent 4> performs

<no-action: <action: agent-id: 4, recipient-ids: (ALL-AGENTS)>>.
=======================
= Running <my-agent 3>.
= <my-agent 3> performs

<no-action: <action: agent-id: 3, recipient-ids: (ALL-AGENTS)>>.
=======================
= Running <my-agent 4>.
= <my-agent 4> performs

<no-action: <action: agent-id: 4, recipient-ids: (ALL-AGENTS)>>.

4.5 Running Parallel Series of Experiments

Experiments that involve grammar learning, rich conceptualization mechanisms or excessive search
can be very slow or can require large number of interactions for the desired pheomeon to emerge.
Especially running multiple series of the same experiment in order to have averaged results (running
batches) can take forever on a single processor.

Our experiment framework provides one mechanism for speeding this up: multiple series of the same
experiment can be run in parallel on a machine that has multiple processors. So far this works only
on SBCL and only on machines where di↵erent sub-processes are automatically scheduled, but it
is very likely that other Lisps and machine architectures will be supported in the future.

Furthermore, there are functions for analyzing the impact of di↵erent configurations on a particular
measure within one graph.

The functions for parallel batches are defined in systems/experiment-framework/parallel-batch.lisp.

4.5.1 function run-parallel-batch &key ...

4 The Experiment Framework 58

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

co
m

m
un

ic
at

iv
e

su
cc

es
s

le
xi

co
n

si
ze

number of interactions

communicative success
lexicon size

Figure 4.2: An example for a graph created with run-parallel-batch. This is the same graph
that also would be created with run-batch, except that it is faster to use run-parallel-batch.

description The same as method run-batch (see section 4.2.3.2), with the di↵erence
that each series is run in parallel. Internally it starts for each of the series a
separate client Lisp process and then loads and runs a specified experiment
in it. The results of each series are then collected and graphs are produced.

:asdf-system The asdf system of the experiment to run.

:package The package to run the experiment in.

:experiment-class The experiment to run.

:number-of-
interactions

How many interactions to run in each client.

:number-of-series How many series to run. This also determines also how many client Lisp
processes will be started. When for example your machine has 10 pro-
cessors and :number-of-series is 10, then each of these processes will
be run at 100% CPU usage, speeding up the batch to take only 10% of
the time of a serial batch on a single processor. When there are only 5
processors, then each Lisp will run at 50%, speeding up the batch to take
20% of the time.

:monitors Which monitors to use (a list of strings). This can be any kind of monitor,
but it makes sense only for those that use data recorders, e.g. gnuplot
monitors or data writers.

4 The Experiment Framework 59

example (run-parallel-batch
:asdf-system "babel-demo"
:package "babel-demo"
:experiment-class "naming-game"
:number-of-interactions 2000
:number-of-series 10
:monitors ’("babel-demo::plot-success+lexicon-size"))

This has the same e↵ect as running

(asdf:operate ’asdf:load-op :babel-demo)

(in-package :babel-demo)

(activate-monitor babel-demo::plot-success+lexicon-size)

(run-batch (make-instance ’naming-game) 2000 10)

, except that it takes only 10% of the time. The resulting graph is shown
in figure 4.2.

4.5.2 function create-graphs-for-di↵erent-experimental-conditions &key ...

description Creates graphs for the impact on di↵erent experimental conditions on par-
ticular measures. Di↵erent conditions are implemented as separate experi-
ment classes that are then run one after each other, with the results merged
into one graph.

example When there is for example an experiment class naming-game, di↵erent con-
ditions that analyze di↵erent strategies for lexicon update can be created
by subclassing from naming-game and then setting di↵erent configurations
during the initialization:
(defclass ng-1 (naming-game) ())
(defclass ng-2 (naming-game) ())
(defclass ng-3 (naming-game) ())

(defmethod initialize-instance :after ((experiment ng-1) &key)
(set-configuration experiment ’word-score-delta-success 0.0)
(set-configuration experiment ’word-score-delta-inhibit 0.0)
(set-configuration experiment ’word-score-delta-fail 0.0))

(defmethod initialize-instance :after ((experiment ng-2) &key)
(set-configuration experiment ’word-score-delta-success 0.1)
(set-configuration experiment ’word-score-delta-inhibit 0.0)
(set-configuration experiment ’word-score-delta-fail -0.1))

(defmethod initialize-instance :after ((experiment ng-3) &key)
(set-configuration experiment ’word-score-delta-success 0.1)
(set-configuration experiment ’word-score-delta-inhibit -0.2)
(set-configuration experiment ’word-score-delta-fail -0.1))

4 The Experiment Framework 60

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

le
xi

co
n-

si
ze

number of interactions

no update
update

update + lateral inhibition

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

co
m

m
un

ic
at

iv
e

su
cc

es
s

number of interactions

no update
update

update + lateral inhibition

Figure 4.3: Examples for graphs create by create-graphs-for-different-experimental-
conditions.

4 The Experiment Framework 61

The impact of these di↵erent update strategies can then be plotted with
this:
(create-graphs-for-different-experimental-conditions

:asdf-system "babel-demo"
:package "babel-demo"
:experiment-base-class "naming-game"
:experiment-classes ’("ng-1" "ng-2" "ng-3")
:captions ’("no update" "update" "update + lateral inhibition")
:number-of-interactions 2000
:number-of-series 10
:data-recorders ’("babel-demo::record-communicative-success"
"babel-demo::record-average-number-of-words")

:average-data ’(t t)
:parameters-for-graphic-generators
’((:x-label "number of interactions" :y1-label "communicative success"

:error-bars t :y1-max 1 :y1-min 0 :draw-y1-grid t
:graphic-type "pdf" :key-location "right bottom"
:file-name
(babel-pathname
:name "success-vs-update-strategy" :type "pdf"
:directory ’("experiments" "babel-demo" "graphs")))

(:x-label "number of interactions" :y1-label "lexicon-size"
:error-bars t :y1-min 0 :draw-y1-grid t
:graphic-type "pdf" :key-location "right bottom"
:file-name
(babel-pathname
:name "lexicon-size-vs-update-strategy" :type "pdf"
:directory ’("experiments" "babel-demo" "graphs")))))

The resulting-graphs are shown in figure 4.3.

:asdf-system
:package :number-
of-interactions

:number-of-series

The same as in run-parallel-batch above.

:experiment-base-
class

The base class of the di↵erent conditions (only needed for creating graph
file names).

:experiment-classes The experiments to run (a list of strings).

:captions A graph caption for each of the conditions.

:data-recorders The measures (data recorders) to use. For each measure a separate graph
will be created.

:average-data Determines for each of the measures whether the results are averaged or
not.

:parameters-for-
graphic-generators

Specifies the appearance of the graphs. Internally, instances
of gnuplot-graphic-generators are created and everything in
:parameters-for-graphic-generators is passed to them, so for details
see section 3.2.4.3.

4 The Experiment Framework 62

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

le
xi

co
n-

si
ze

number of interactions

1.0
0.5

0.25
0.125

0.05

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

co
m

m
un

ic
at

iv
e

su
cc

es
s

number of interactions

1.0
0.5

0.25
0.125

0.05

Figure 4.4: Examples for graphs create by create-graphs-for-different-experimental-
configurations.

4 The Experiment Framework 63

4.5.3 function create-graphs-for-di↵erent-experimental-configurations &key ...

description This is very similar to create-graphs-for-different-experimental-
conditions, with the di↵erence that it does not require to create separate
classes for each experimental condition. Instead, the same experiment
class is run multiple times with di↵erent configurations.

example This example runs the naming-game experiment class 5 times, each time
with a di↵erent probability for the invention of words:
(create-graphs-for-different-experimental-configurations

:asdf-system "babel-demo"
:package "babel-demo"
:experiment-class "naming-game"
:configurations
’(((babel-demo::probability-for-word-invention . 1.0))
((babel-demo::probability-for-word-invention . 0.5))
((babel-demo::probability-for-word-invention . 0.25))
((babel-demo::probability-for-word-invention . 0.125))
((babel-demo::probability-for-word-invention . 0.05)))

:captions ’("1.0" "0.5" "0.25" "0.125" "0.05")
:number-of-interactions 2000
:number-of-series 10
:data-recorders ’("babel-demo::record-communicative-success"
"babel-demo::record-average-number-of-words")

:average-data ’(t t)
:parameters-for-graphic-generators
’((:x-label "number of interactions"

:y1-label "communicative success"
:error-bars t :y1-max 1 :y1-min 0 :draw-y1-grid t
:graphic-type "pdf" :key-location "right bottom"
:file-name
(babel-pathname
:name "success-vs-invention-probabilities" :type "pdf"
:directory ’("experiments" "babel-demo" "graphs")))

(:x-label "number of interactions" :y1-label "lexicon-size"
:error-bars t :y1-min 0 :draw-y1-grid t
:graphic-type "pdf" :key-location "right bottom"
:file-name
(babel-pathname
:name "lexicon-size-vs-invention-probabilities" :type "pdf"
:directory ’("experiments" "babel-demo" "graphs")))))

The resulting-graphs are shown in figure 4.4.

4 The Experiment Framework 64

:asdf-system
:package :number-
of-interactions

:number-of-series
:data-recorders
:average-data

:parameters-for-
graphic-generators

The same as in create-graphs-for-different-experimental-conditions
above.

:experiment-class The class of the experiment to run with di↵erent configurations.

:configurations Lists of configurations for each run. A configuration is a list of configu-
ration / value pairs and the client processes pass them to the experiment
with set-configuration.

:captions A graph caption for each of the configurations.

4.5.4 function create-graphs-for-di↵erent-population-sizes &key ...

description This function shows the impact of varying population sizes on particular
measures. In order to make the di↵erent runs comparable, the x-axis does
not show the number of interactions, but the number of interactions that
each agent played on average. When for example the population size is 10
and the number of series 1000, then each agent will have played 200 games
until the end.

4 The Experiment Framework 65

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900 1000

le
xi

co
n

si
ze

number of interactions per agent

10 agents
50 agents

100 agents
250 agents
500 agents

1000 agents

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

co
m

m
un

ic
at

iv
e

su
cc

es
s

number of interactions per agent

10 agents
50 agents

100 agents
250 agents
500 agents

1000 agents

Figure 4.5: Examples for graphs create by create-graphs-for-different-population-sizes.

4 The Experiment Framework 66

example This example runs the naming-game experiment class with 6 population
sizes:
(create-graphs-for-different-population-sizes

:asdf-system "babel-demo"
:package "babel-demo"
:experiment-class "naming-game"
:population-sizes ’(10 50 100 250 500 1000)
:number-of-interactions-per-agent 1000
:number-of-series 10
:data-recorders ’("babel-demo::record-communicative-success"

"babel-demo::record-average-number-of-words")
:average-data ’(t t)
:parameters-for-graphic-generators
’((:key-location "bottom right"

:x-label "number of interactions per agent"
:y1-label "communicative success" :error-bars t
:y1-min 0.0 :y1-max 1 :draw-y1-grid t
:graphic-type "pdf" :colored t
:file-name
(babel-pathname
:name "success-vs-population-size" :type "pdf"
:directory ’("experiments" "babel-demo" "graphs")))

(:key-location "top right"
:x-label "number of interactions per agent"
:y1-label "lexicon size" :error-bars t :y1-min 0
:y1-max 150 :draw-y1-grid t
:graphic-type "pdf" :colored t
:file-name
(babel-pathname
:name "lexicon-size-vs-population-size" :type "pdf"
:directory ’("experiments" "babel-demo" "graphs")))

))

The resulting-graphs are shown in figure ??.

:asdf-system
:package

:experiment-class
:number-of-series
:data-recorders
:average-data

:parameters-for-
graphic-generators

See above.

:population-sizes A list of di↵erent population sizes. This will be used in the client processes
to do (set-configuration experiment ’population-size xxx), so
you will have to create populations depending on ’population-size.

:number-of-
interactions-per-

agent

How many interactions to run per agent. If for example the population size
is 1000 and the :number-of-interactions-per-agent 1000, then 500000
interactions will be run by each client process.

5 Learning

Learning is deeply entrenched into the Babel framework. Learning in Babel cannot be only induc-
tive learning since the agents also have to invent or change new items for their (linguistic) inventory
to be gradually built up. We cannot assume (like is often done in machine learning algorithms)
that there is a pre-given input set from which the agents can learn. In other words we do not
assume that there is a teacher. All the input an agent ever gets is the world and output from other
agents. This requires a constructivist approach to learning. To meet these requirements we have
split up learning into diagnosing and repairing. In section 5.1 we present the definitions for the
base classes including diagnostic, problem and repair-strategy. Sections 5.2 and 5.3 present the
two instantiations of this base-framework that we have provided by default in Babel. These are
the process level learning mechanisms and the agent level learning mechanisms. We use the term
learning mechanism to signify both diagnostic and repair-strategy. Section 5.5 shows a detailed
example on how to write a diagnostic, with a corresponding problem and repair-strategy.

I suggest for everybody who intends to write an experiment to read the complete chapter carefully.

5.1 Base classes

The classes in this section are abstract base classes of the learning mechanisms. Di↵erent levels of
learning mechanisms subclass from them and add further semantics. All these classes can be found
in the file “learning-mechanisms.lisp” in the experiment-framework.

5.1.1 class diagnostic

description The base class for all diagnostics.

situations (learning-situations :type list :reader learning-situations :initform nil
:initarg :learning-situations)

A situation narrows down the point of execution of a diagnostic. The kinds
of learning-situations depends on the level the diagnostic is operating on.
It is a list of symbols.

5.1.2 monitor event diagnostic-started (diagnostic diagnostic)

description Triggered when a diagnostic starts running.

diagnostic The diagnostic that is run.

5.1.3 class problem

67

5 Learning 68

description Represents a problem. A problem is created by diagnostics to signal a
failure or some ine�ciency and contains all the information necessary to
deal with the problem.

slot issued-after (issued-after :type symbol
:accessor issued-after
:initform nil
:initarg :issued-after)

This is a symbol representing when this problem was signaled. When
created by a process-diagnostic this is the name of the process.

slot repaired-by (repaired-by :type t :accessor repaired-by
:initform nil
:initarg :repaired-by)

This slot is automatically set to the repair-strategy that repaired it. When
it’s nil it means it’s still unrepaired

5.1.4 monitor event diagnostic-returned-problems (diagnostic diagnostic) (problems list)

description Triggered after a diagnostic was run and only if it returned at least one
problem.

diagnostic The diagnostic that was run.

problem The list of problems that was returned.

5.1.5 class repair-strategy

description Base class for all repair strategies. Repair strategies are able to deal with
a set of problems.

slot triggered-
by-problems

(triggered-by-problems :type list :reader triggered-by-problems
:initform nil
:initarg :triggered-by-problems)

A list of problems (class names of problems) that the repair strategy might
be able to fix.

slot
learning-situations

(learning-situations :type list :reader learning-situations :initform nil
:initarg situations)

situation narrows down the point of execution of a repair-strategy. The
kinds of learning-situations depends on the level the repair-strategy is op-
erating on. It is a list of symbols.

5 Learning 69

slot success-score (success-score :type number :accessor success-score
:initform 1.0 :initarg :success)

Resembles how successful the repair-strategy is. The higher the better.
This will be used to sort when multiple repair-strategies can be triggered
at the same time.

5.1.6 monitor event repairing-started (repair-strategy repair-strategy) (problem problem))

description When a repair strategy is called.

repair-strategy The repair strategy that is called.

problem The problem on which it is called.

5.1.7 monitor event repairing-finished (repair-strategt repair-strategy) (repaired boolean))

description After a repair strategy was run.

repair-strategy The repair strategy that was run.

repaired Whether it was able to repair or not.

5.1.8 class object-with-learning-mechanisms

description A helper class that provides derived classes with learning mechanisms. At
the moment of writing the classes that derive from this are an experiment
[4.2.1.1], an agent [4.1.2.1] and a task [6.1.1.1].

slot diagnostics (diagnostics :type list :accessor diagnostics
:initarg :diagnostics :initform nil)

A list of diagnostics.

slot repair-
strategies

(repair-strategies :type list :accessor repair-strategies
:initarg repair-strategies :initform nil)

A list of repair strategies.

5.1.9 generic function add-diagnostic object diagnostic

description/ default
implementation

Adds a diagnostic to object.

object Anything that is derived from object-with-learning-mechanisms.

diagnostic An instance of a diagnostic. If there is already an diagnostic of the same
class as diagnostic in object, that diagnostic is replaced and you will
get a warning.

5 Learning 70

example (add-diagnostic *experiment*
(make-instance ’uncovered-meaning-diagnostic))

5.1.10 generic function delete-diagnostic object diagnostic

description/ default
implementation

Deletes a diagnostic from object.

object Anything that is derived from object-with-learning-mechanisms.

diagnostic A diagnostic of object.

5.1.11 generic function add-repair-strategy object repair-strategy

description/ default
implementation

Adds a repair strategy to object.

object Anything that is derived from object-with-learning-mechanisms.

repair-strategy An instance of a repair strategy.

5.1.12 generic function delete-repair-strategy object repair-strategy

description/ default
implementation

Deletes a repair strategy from object.

object Anything that is derived from object-with-learning-mechanisms.

repair-strategy A repair strategy of object.

5.1.13 monitor trace-learning trace-monitor

description Prints information on detected and repaired problems.

5.1.14 monitor trace-learning-verbose trace-monitor

description In addition to the stu↵ printed by monitor trace-learning, it also prints
which learning mechanisms are run and changes of an agent’s inventories
(for example when rules are added or modified).

5.2 Process level learning

In Babel one can learn (by default) both at the level of processes (see chapter ?? if you don’t know
what processes are) and at the level of an agent. In this section we focus on the process level
learning mechanisms.

5 Learning 71

A process-diagnostic can be run after any given process. It can report a problem if it detects one.
After every process there is a check for new problems and the process level repair strategies get a
chance to fix them. In case of a successful repair the repaired-by slot of the process get’s set to the
repair-strategy and there might be a restart to a previous process. This will become more clear
when you get read about the classes and their methods further down. All of this can be found in
the file “process-learning-mechanisms.lisp” in tasks-and-processes.

5.2.1 class process-diagnostic diagnostic

description A diagnostic that is triggered after the execution of a process. Examples
of possible learning-situations are production, re-entrance, interpretation,
production.

slot
trigger-processes

(trigger-processes :type list :reader trigger-processes :initform nil)

The names of processes after which this diagnostic should be triggered.

This means the exact point of execution of a process-diagnostic is a combination of the learning-
situations and the trigger-processes. For example if the learning-situations are ’(production) and
the trigger-processes are ’(apply-lex-stem) the diagnostic will only be called during production and
after the lex-stems were applied.

To run a process-diagnostic one has to implement a diagnose-process method. If you define a
process-diagnostic without supplying an implementation for this method an error will be thrown.
Diagnose-process should return either one problem, a list of problems or nil. If this is not the case
an error will be thrown. In case one or more problems are returned they are automatically added
to the problems of the task that is currently running. When nil is returned it means that the
diagnostic did not diagnose anything.

5.2.2 generic function diagnose-process process-diagnostic task process

description/ default
implementation

Diagnose-process is called after running a process and handling it’s process-
results. It’s exact call-location depends on the combination of it’s trigger-
processes and it’s learning-situations. e.g. If trigger-process is apply-lex-
stem and situation is production this method will only be executed after
apply-lex-stem during production of the speaker and nowhere else.

process-diagnostic The diagnostic you want to specialise on.

task You will need this task for diagnosing a potential problem.

process A process is just a symbol but it might be necessary if the diagnostic can be
triggered after di↵erent processes. Since we provide you with the process
you know immediatly in which case you are. You can even specialise on
it.

5.2.3 class task-problem problem

5 Learning 72

description A problem is always related to a task. Therefore you should always derive
from this and not from the base-class problem.

slot task (task
:type task
:initform (error "When creating a task-problem you have to supply a :task")
:initarg :task
:accessor task)

The task this problem is about.

5.2.4 class process-repair-strategy repair-strategy

description A process-repair-strategy can be triggered on a problem. Process repair-
strategies are checked in between every process.

Every process-repair-strategy should have a repair-process method specialised on it. Repair-process
can return two values. The first a boolean whether the repair succeeded or not. Second a process
(which is a symbol) to which the task must be restarted. If this is nil it will just continue. I would
like to stress that one should be very careful in setting the first boolean to true and restarting.
Because if the problem during the restart gets signaled again the repair will be triggered again and
one potentially finds himself in an infinite loop. So only return true (with a restart) when you
are very certain that all necessary modifications have been made so that the problem will not get
diagnosed anew.

5.2.5 generic function repair-process repair-strategy problem task process

description/ default
implementation

In between every process the problems will be checked and if possible a
correct repair-process will be executed. It can return two values. The first
a boolean whether the repair succeeded or not. Second a process (which
is a symbol) to which the task must be restarted. If this is nil it will just
continue.

repair-strategy The repair-strategy you want to specialise on.

task The current task. You will probably also need it for repairing.

problem The problem that triggers the repair-strategy. You probably need to spe-
cialise on this too. A problem can contain many usefull slots containing
information already gathered during diagnosing.

process A process is just a symbol but it might be necessary if the diagnostic can be
triggered after di↵erent processes. Since we provide you with the process
you know immediatly in which case you are. You can even specialise on
it.

5 Learning 73

5.3 Agent level learning

Sometimes it is impossible to diagnose or repair something in between processes. One reason is
that at the process level you do not have all the information necessary to perform the diagnosis.
For example when you need re-entrance information and compare this to production. Sometimes
it is possible to diagnose something after a given process but can only repair it later e.g. after
receiving pointing information.

One of the nicest features of the learning framework is that problems are “level-independent”. A
problem diagnosed by a process level diagnostic can be repaired by an agent level repair-strategy.
This is possible because all the problems from the (best) task get copied to the agent when the
task has finished. Actually it runs deeper, there is no direct link between a diagnostic and a
repair-strategy. Their connection is only indirect by the use of problems.

We will start by presenting the most important classes. All the information presented here can be
found in “agent-learning-mechanisms” in experiment-framework.

5.3.1 class agent-diagnostic diagnostic

description A diagnostic that is triggered after run-agent.

For every agent-diagnostic one has to supply a diagnose-agent method.

5.3.2 generic function diagnose-agent diagnostic agent-interaction-point agent world

description/ default
implementation

After run-agent diagnose-agent will be called for every agent-diagnostic.
They have to return either one problem, a list of problems or nil. The
problems will be pushed onto the problems of the agent automatically.

diagnostic The diagnostic you want to specialise on.

agent-interaction-pointThis is a more specific name for a learning situation at the agent level.
It is a symbol and can be used to specialise or just to check what the
interaction-point is.

agent The agent that is currently running.

world This is one of the major di↵erences with a process-diagnostic that one has
access to the world at this level.

5.3.3 class agent-repair-strategy repair-strategy

description These repair strategies are executed after run-agent. They try to repair
problems in the agent, which could also be problems created by lower-level
diagnostics.

Every agent-repair-strategy should supply a repair-agent method. A repair-agent-method can re-
turn two values. The first a boolean whether the repair was successful or not. Second can be
anything which is guaranteed to be put into the “rerun-data” slot of the agent. The second value

5 Learning 74

only matters when the first is non nil and consists of rerun-data. When it is not nil it signifies a
restart of run-agent. This second value will also be stored automatically in the “rerun-data” slot
of the agent. This allows one to change the behaviour during a rerun. For example one could skip
conceptualisation.

5.3.4 generic function repair-agent repair-strategy agent-interaction-point problem agent world

description/ default
implementation

repair-agent is called after run-agent. It might however also repair prob-
lems created by lower-level diagnostics. It can return two values. The first
one a boolean signifying whether the repair was successful. The second
rerun-data that is automatically stored in the rerun-data slot of the agent.
When the rerun-data is non-nil a restart will be initiated.”

repair-strategy The repair-strategy you want to specialise on.

agent-
interaction-point

This is a more specific name for a learning situation at the agent level.
It is a symbol and can be used to specialise or just to check what the
interaction-point is.

problem The problem that triggers the repair-strategy. You probably need to spe-
cialise on this too. A problem can contain many usefull slots containing
information already gathered during diagnosing.

agent You have access to the agent during repairing.

world You have access to the world during repairing.

5.3.5 class rerun-data

description An empty abstract class that can be used to derive from when creating ob-
jects to return as second value in repair-agent. Rerun-data-with-restored-
task which is used in the language-game templates is derived from this.

5.3.6 class rerun-data-with-restored-task rerun-data

slot
trigger-processes

(trigger-processes :type list :reader trigger-processes :initform nil)

The names of processes after which this diagnostic should be triggered.

5.4 FCG level learning

The option exists to diagnose or repair independently from processes and agent interaction points,
namely on the level of FCG processing. This gives you the freedom to work with a single parsing or
production process since you can already diagnose problems inside the search tree and repair them
accordingly. Moreover, this type of learning can also be used outside the experiment framework in
a stand-alone grammar.

5 Learning 75

Since FCG learning operators also create problems, their use is fully compatible with the process
and agent level diagnostics and repair strategies introduced above. This means that a problem
diagnosed by an FCG diagnostic could be repaired by an agent level repair.

Concretely, the FCG learning mechanisms work on the level of a cip node

1. A cip node (and a
construction inventory processor (henceforth cip) itself) is an object-with-learning-mechanisms
and has an additional slot construction-inventory. It is that inventory that will be updated after
learning. It is important to note that the construction inventory of a cip node is not automatically
copied to the construction inventory of the whole cip to prevent unexplored branches in the search
tree from using the updated construction inventory. It is thus up to the user to choose where to
pass the learned constructions of a cip node to the cip (perhaps not at all if another branch was
successful without a repair).

We introduce the most important classes below. Please note that working with the FCG learn-
ing mechanisms implies that you use the agent class called fcg-agent in order to pass the di-
agnostics and repair strategies from the experiment down to the construction inventory of the
agents in the population. All code supporting the FCG learning mechanisms can be found in
/Babel2/systems/fcg/fcg-learning.lisp.

5.4.1 class fcg-diagnostic diagnostic

description A diagnostic that is triggered in next-cip-solution.

For every fcg-diagnostic one has to supply a diagnose-fcg method.

5.4.2 generic function diagnose-fcg diagnostic cip-node

description/ default
implementation

At the end of next-cip-solution diagnose-fcg will be called for every fcg-
diagnostic. They have to return either one problem, a list of problems
or nil. The problems will be pushed onto the problems of the cip node
automatically.

diagnostic The diagnostic you want to specialize on.

cip-node The node in the construction inventory processor that will be diagnosed.
This node contains the FCG construction application result, potential
problems already diagnosed, the construction inventory that was used in
processing, etc. The complete construction inventory processor can easily
be accessed through this slot.

5.4.3 class fcg-repair-strategy repair-strategy

description These repair strategies are executed in next-cip-solution. They try to
repair problems in a particular node in the construction inventory proces-
sor.

1
Cip stands for “construction inventory processor”.

5 Learning 76

Every fcg-repair-strategy should supply a repair-fcg method. A repair-fcg-method returns a boolean
value that indicates its success and optionally a repair construction inventory processor (cip). If a
cip is returned, the search process will be restarted based on this cip. The user should implement
its own restart function. An example is given below:

(defun restart-cip (node restart-data)
(create-construction-inventory-processor
(construction-inventory node) ;;cxn-inventory of the node
:initial-cfs (if restart-data

(if (stringp (first restart-data))
(de-render restart-data :default) ;;utterance
(create-initial-structure restart-data :default)) ;;meaning

(initial-cfs (cip node)))
:direction (direction (cip node)) ;; direction of the cip
:problems (copy-list (problems (cip node)))))

A new search tree is being built, this time with an updated construction inventory (in the cip).
The problems of the previous cip are copied to the new cip so they can be accessed in consolidation
(e.g. through the cip-solution data-field of the agent). In the example function, a new initial-cfs is
made. This is optional. An alternative would be to copy the initial-cfs of the previous search tree.

5.4.4 generic function repair-fcg repair-strategy problem cip-node

description/ default
implementation

repair-fcg is called at the end of next-cip-solution. It can return two values.
The first one is a boolean signifying whether the repair was successful. The
second one is either nil or a construction inventory processor.

repair-strategy The repair-strategy you want to specialize on.

problem The problem that triggers the repair-strategy. You probably need to spe-
cialize on this too. A problem can contain many useful slots containing
information already gathered during diagnosing.

cip-node The node in the construction inventory processor that contains the prob-
lem specialized on.

5.4.5 class fcg-agent agent

description An fcg-agent inherits from the general agent class and has adds one slot
construction-inventory. This slot needs to be set as soon as a new
instance of an fcg-agent is made: e.g.
(make-instance ‘my-agent

:id 1
:cxn-inventory (make-example-cxn-inventory))

5 Learning 77

5.5 Detailed example

We will start with an example for writing process level learning mechanisms. If you are not yet
acquainted with the cookie-baking example in section 6.3 from chapter ?? then I suggest you read
that first because the current example builds further on that one.

For clarity reasons, here is what we had so far.

(defclass cookie-baking-agent (agent-with-tasks)
()
(:documentation "An agent capable of making delicious cookies."))

(defmethod initialize-instance :after ((agent cookie-baking-agent) &key)
(add-data-field agent ’available-ingredients nil))

(defclass simple-cookie-baking-task (task)
()
(:documentation "An implementation of a task for baking simple cookies."))

(defmethod initialize-instance :around ((task simple-cookie-baking-task) &key &allow-other-keys)
(call-next-method)

(add-data-field task ’used-ingredients nil)
(add-data-field task ’missing-ingredients nil)
(add-data-field task ’cookies nil)

(add-process task ’find-all-ingredients nil)
(add-process task ’make-cookies ’(find-all-ingredients))
(add-process task ’bake-cookies ’(make-cookies)))

(defmethod run-process ((task simple-cookie-baking-task)
(process (eql ’find-all-ingredients)))

(if (subsetp ’(chocolate flour) (get-data task ’available-ingredients))
(list (make-process-result :succeeded t :confidence 1.0

:data (list (cons ’ingredients (chocolate flour)))))
(list (make-process-result :succeeded nil :confidence 0.0

:data (list
(cons ’ingredients

(intersection ’(chocolate flour)
(get-data task ’available-ingredients))))))))

(defmethod run-process ((task simple-cookie-baking-task)
(process (eql ’make-cookies)))

...
(list (make-process-result ...)))

(defmethod run-process ((task simple-cookie-baking-task)
(process (eql ’bake-cookies)))

...
(list (make-process-result ...)))

(defmethod goal-achieved ((task simple-cookie-baking-task))

5 Learning 78

(and (find ’bake-cookies (finished-processes task))
(succeeded (get-process-result task ’bake-cookies))))

What would happen if an agent runs out of some ingredients. This would mean that every cookie-
baking task would fail since find-all-ingredients would fail.

To solve this issue we define a process-diagnostic that is able to detect that ingredients are missing.

(defclass detect-missing-ingredients (process-diagnostic)
()
(:documentation "After running find-all-ingredients this
diagnostics checks whether there where ingredients missing."))

(defmethod initialize-instance :after ((diagnostic detect-missing-ingredients) &key)
(setf (slot-value diagnostic ’trigger-processes) ’(find-all-ingredients))
(setf (slot-value diagnostic ’learning-situations) ’(baking)))

Note the after method that sets the learning-situations and at this point more important the
trigger-processes. We also create a problem that this diagnostic can create in case of a shortage of
ingredients.

(defclass missing-ingredients-problem (task-problem)
((missing-ingredients :documentation "A list of the missing ingredients."

:initform (error "Please supply :missing-ingredients.")
:initarg :missing-ingredients :accessor missing-ingredients :type list))

(:documentation "This problem is created when there are missing ingredients."))

It has one slot that can be used to store the missing ingredients. In this way the repair-strategy
does not have to look for them again but can just acces them from this problem.

Now it’s time to supply the diagnose-agent method which will do the diagnosing.

(defmethod diagnose-process ((diagnostic detect-missing-ingredients)
(task task) (process symbol))

(let ((process-result (get-process-result task ’find-all-ingredients)))
(when (and (not (pr-succeeded process-result))

(field? (pr-data process-result) ’missing-ingredients))
(make-instance ’missing-ingredients-problem
:missing-ingredients (get-data process-result ’missing-ingredients)
:task task))))

This is all that is necessary for creating a diagnostic that will successfully diagnose missing ingre-
dients. O↵ course we need to supply a repair-strategy that can handle this problem by buying the
missing ingredients.

(defclass buy-missing-ingredients (process-repair-strategy)
()
(:documentation "This repair strategy will add some more
ingredients to the available ingredients."))

(defmethod initialize-instance

5 Learning 79

:after ((repair-strategy buy-missing-ingredients) &key)
(setf (slot-value repair-strategy ’triggered-by-problems) ’(missing-ingredients-problem))
(setf (slot-value repair-strategy ’learning-situations) ’(baking)))

The after method makes sure that the repair-strategy knows which problems it might be able to
repair. It has the same learning-situations so will trigger right after the diagnostic. The repair-agent
method can be implemented as follows:

(defmethod repair-process ((rs buy-missing-ingredients)
(problem missing-ingredients-problem) (task task)
(process symbol))
(loop for (ingredient amount) in (get-data (agent-data task) ’available-ingredients)

when (find ingredient (missing-ingredients problem) :test #’equal)
do (nsubst (list ingredient 5)

(list ingredient 0)
(get-data (agent-data task) ’available-ingredients)
:test #’tree-equal))
(when (every #’(lambda (item) (> (second item) 0))

(get-data (agent-data task) ’available-ingredients))
(values t ’find-all-ingredients)))

This will search for ingredients for which we have zero in stock and put 5 new there. It will restart
at the beginning of find-all-ingredients but only when it is certain that it has indeed supplied all
the necessary ingredients.

6 Tasks and Processes

Most of this chapter is not needed when writing experiments. When using the language game
templates you will only get confronted with tasks when writing learning mechanisms.

For those that would like to read the minimum and are not interested in writing their own tasks
we advise section 6.1.1.1 and when you’re interested in writing process learning mechanisms it is
strongly advised to read chapter 5 carefully and since you will be accessing information about the
processes it is also recommended to read section 6.2.

Section 6.3 clearly shows an example of how to create a task and knowing how to write your own
will most certainly help you in understanding the default tasks.

For those who are interested how tasks and processes are run behind the scenes there is section
6.1.2. If you are writing advanced learning mechanisms it might also be a good read.

6.1 Tasks, task-processors and task-results

Tasks are used for maintaining and running processes. They are the primary interface to tasks
and processes. From the moment you want more control over your experiments then the default
behaviour you will have to deal with tasks. In section 6.1.1.1 class task is explained in full detail.

6.1.1 Task

6.1.1.1 class task object-with-learning-mechanisms

description A “task” inherits from object-with-learning-mechanisms. Besides the slots
it inherits from its superclasses it contains some new slots that are specific
to a task.

slot (id :type symbol :reader id)

A symbol that is generated automatically during instantiation by incre-
menting the id-counter and prepending it with ’TASK. Therefore id’s are
of form “TASK-X”.

slot (data :type blackboard :accessor data :initarg :data)

Data that is local to the task and exchanged between processes.

slot (agent-data :type blackboard :accessor agent-data :initarg :agent-data)

(A copy of) the persistent data (inventories) of the agent.

80

6 Tasks and Processes 81

slot (processes :type list :initform nil :reader processes)

An alist of processes and their dependencies that are used by this task. A
list of conses (a . (b c)): a depends on b and c.

slot (finished-processes :type list :initform nil :accessor finished-processes)

The processes that have been run.

slot (process-results :type list :initform nil :accessor process-results)

An alist of all finished processes and their process-result. When a process
finished it returns a process-result. This result is always (irrespective of it
being successful or not) added to the process-results.

slot (problems :type list :initform nil :initarg :problems :accessor problems)

All the problems that were reported by diagnostics operating on a task
level or lower. (e.g. the process-diagnostics)

slot (data-states :type list :initform nil
:initarg :data-states :accessor data-states)

We keep a copy of the data-slot at the beginning of every process. This
allows for very easy, fast and non-ambiguous restoring of a task. Although
it comes at some copying cost during task execution. It is an alist of
(process . data).

slot (agent :type list :initform nil :initarg :agent :accessor agent)

A pointer to the agent which created this task (if applicable). Added this
slot for monitoring purposes only.

slot (configuration :type configuration
:initarg :configuration :accessor configuration)

For configuring the task.

First we present the generic functions that you will probably need when creating your own task or
writing learning mechanisms.

6.1.1.2 generic function get-process-result task process

description/ default
implementation

Returns the process-result for the given process. It errors when it cannot
find a process-result for the given process.

6.1.1.3 generic function run-process task process

description/ default
implementation

This is the method that has to be implemented for every process. It is
in a sense what defines the process. It should return a list of process-
results. Even when a process fails it should return a list containing one
process-result.

6 Tasks and Processes 82

6.1.1.4 generic function goal-achieved task

description/ default
implementation

Returns t if the goal of a task was achieved. It is a very important method
because a task can only be successful if it passes this test. When it does
it also completely stops the running of any other processes from the task
because it has achieved what it needed to.

6.1.1.5 generic function finished-processes task

description/ default
implementation

Returns a list of all processes that have been run irrespective of them being
successful.

6.1.1.6 generic function add-process task process dependencies

description/ default
implementation

Adds a process and it’s dependencies to a task.

6.1.1.7 generic function delete-process task process

description/ default
implementation

Deletes a process and it’s dependencies from a task.

6.1.1.8 generic function run-task task

description/ default
implementation

Runs the given task. It returns a task-result-collection since running a
task could spawn many new tasks in case of ambiguity.

The following generic functions are more internal to the execution of tasks and processes and you
will most probably not need them unless you are interested in changing how a task is run.

6.1.1.9 generic function get-all-process-dependencies task process &optional result

description/ default
implementation

Returns a list of all the processes that have to be finished before this pro-
cess can be run. This is a recursive (and deeper) variant of get-process-
depencies.

6.1.1.10generic function get-all-dependent-processes task process &optional result

description/ default
implementation

Returns a list of all processes that cannot be run before the given process
is run. So all the processes that are directly or indirectly dependent on
the given process.

6.1.1.11generic function dependencies-solved? task process

description/ default
implementation

Returns true if all the dependencies of the given process are solved.

6 Tasks and Processes 83

6.1.1.12generic function get-processes-without-dependencies task

description/ default
implementation

Returns a list of processes without their dependencies. This is just a list
of all the processes the task knows.

6.1.1.13generic function get-process-dependencies task process

description/ default
implementation

Returns a list of processes on which the given process depends. The list
contains only the direct dependencies. e.g. If ’a’ depends on ’b’ and ’b’
depends on ’c’ and you ask get-process-dependencies for ’a’ it will only
give you ’b’ and not ’c’. If you want the complete list of dependencies use
get-all-process-dependencies.

6.1.1.14generic function add-process-result task process process-result

description/ default
implementation

Add the process-result to the process-results of the object.

6.1.2 Behind the scenes: Running of a Task

Running all the processes in a task requires a lot of bookkeeping. For example one needs to keep
track of all the processes that have been run, after every process check whether dependencies of
some processes have been met and queue them so they can be run next. Since we did not want to
clutter the class task, we created a new structure task-processor that contains one task, namely the
task that is being run and has some extra slots such as a process-queue for bookkeeping. Normally
you should never have to create a task-processor yourself. This is all done automatically behind the
scenes. Moreover chances are very small you will ever interface with a task-processor since when a
task has finished a task-result (see section 6.1.2.4) is created and the task-processor gets collected
in the garbage.

6.1.2.1 structure task-processor node

description A task-processor contains a task and other information needed for running
the processes in this task.

slot (task :type task :accessor tp-task :initarg :task
:initform (error "Please provide a task

when creating a task-processor."))

The task this task-processor task is processing.

6 Tasks and Processes 84

slot (confidence :type float :accessor tp-confidence
:initarg :confidence :initform 0.0)

This is used during running tasks for determining which should be run
next. So tasks are run by priority on their confidence. And also in the end
the bast-task is the one with the highest confidence. The confidence of a
task is a function of the confidences of the processes it has run.

slot (process-queue :type queue :accessor process-queue
:initarg :process-queue :initform (make-instance ’queue))

The process-queue is used for keeping track of the processes when running
them.

6.1.2.2 generic function restart-task task-processor process

description/ default
implementation

Restart a task at a specific process. Restores the process-queue of the
task-processor and rewrites previous process results to the black board.

6.1.2.3 generic function run-processes task-processor

description/ default
implementation

Try running all processes of the task inside the task-processor.

There are three di↵erent possibilities for a task to stop.

1. First (goal-achieved task) could return true. When this is the case the task has achieved it’s
goal and stops it’s execution.

2. Second when a task has no more processes to run (because it has run them all, or because
some dependencies are not met) and the goal has not been achieved yet the task simply fails.

3. Third the task could also “split” into multiple new tasks. This only happens when run-process
returns more then one process-result. When this is the case the original task also stops and
the newly created tasks take over. In a sense the task not really stops, it just hands over
responsibility to it’s children.

In the first two of these cases an object of structure “task-result” is created. Normally you never
have to create a task-result yourself. You will however get in contact with task-results when writing
learning mechanisms. In section 6.1.2.4 you find all the details regarding this class.

6.1.2.4 structure task-result node

description A task-result is created when a task has finished running. It contains the
finished task and some extra slots to indicate whether it succeeded or not
and a confidence. This means it has a contains-a relation with the task
and not a is-a relation. It derives from node which means it can be used
in a tree structure.

6 Tasks and Processes 85

slot (task :type task :initform (error "Please provide a task
when creating a task-result.")

:initarg :task :accessor tr-task)

This is the task the task-result is about. Since you only create a task-result
when the task has finished you have to immediatly supply the task via the
:initarg.

slot (confidence :type float :initarg :confidence :accessor tr-confidence
:initform (error "Please provide a confidence

value when creating a task-result"))

A value between 0 and 1. 1 meaning that you are very confident. In most
cases this will be a function of the process-results of the task.

slot (succeeded :type boolean :accessor tr-succeeded :initarg :succeeded
:initform (error "Please provide a boolean value for

succeeded when creating a task-result"))

Indicates whether the goal of the task was achieved.

Some generic functions from section 6.1.1.1 are also specialised for a task-processor and a task-
result. The call is just passed to task contained in the task-processor or task-result. These are:

• id

• processes

• process-results

• finished-processes

Since a task can split into multiple new tasks and these tasks can split again it is obvious that
the running of one task cannot always return one task-result. It might be many di↵erent task-
results, some of them succeeded others failed. We have captured this in a new structure named
task-result-collection. It includes structure mtree which means that is also a tree. When writing
learning mechanisms you will most probably have to interface with this class very often.

6.1.2.5 structure task-result-collection mtree

description Contains task-results and task-processors structured as a tree. When run-
ning a task it is an instance of task-result-collection that is returned. In
the most simple case (when there is no ambiguity) this structure will only
contain one task-result. However when ambiguous tasks are run it will be
a far more elaborate structure with di↵erent task-results.

slot (succeeded-task-results :type list :accessor succeeded-task-results
:initform nil)

All succeeded task-results. In many cases this will just contain one element.

slot (failed-task-results :type list :accessor failed-task-results
:initform nil)

All failed task-results.

6 Tasks and Processes 86

6.1.2.6 generic function best-task-result task-result-collection

description/ default
implementation

Returns task-result with the highest confidence. It first tries searching
succeeded-task-results and if this is empty it tries failed-task-results.

6.1.2.7 generic function best-task task-result-collection

description/ default
implementation

Returns the task inside the task-result with the highest confidence. It first
tries searching succeeded-task-results and if this is empty it tries failed-
task-results.

To conclude this section we present a simplified and incomplete version of how a task is run:

(defmethod run-task ((task task))
(let ((task-result-collection (make-task-result-collection))

(task-queue (make-instance ’queue))
active-task-processor)

(enqueue-by-priority task-queue (make-instance ’task-processor :task task) #’tp-confidence)
(loop until (empty-queue? task-queue)

do
(setf active-task-processor (pop-front task-queue))
(solve-process-dependencies active-task-processor)
(cond ((goal-achieved (task active-task-processor))

;; the current task succeeded
(add (make-task-result :task (tp-task active-task-processor)

:succeeded t)
task-result-collection))

((not (empty-queue? (tp-process-queue active-task-processor)))
;; there still are processes to run
(let ((new-tasks (run-processes active-task-processor)))
(enqueue-by-priority task-queue new-tasks #’tp-confidence)))

(t ;; the current task failed
(add (make-task-result :task (tp-task active-task-processor)

:succeeded nil)
task-result-collection))))

task-result-collection))

6.2 Processes and Process-results

Processes themselves are not modelled as classes since the only thing that defines them is what they
do. A process is just a symbol like ’render or ’apply-con-rules but every such symbol should also
have a run-process method that specializes on that symbol with an eql statement (also see 6.3 for
an example). Since processes are not modelled they use the task they are part of as a blackboard
to write their output data. When run-process finishes the data from the process-result is written
to the task and the process-result itself is also fully stored in the task for in case one would like to
investigate it for learning.

When a process is running (so inside the run-process of that process) three di↵erent scenario’s are

6 Tasks and Processes 87

possible.

1. First everything goes well and the run-process just returns a list containing one process-result
with it’s succeeded-slot set to true.

2. Second something went wrong and the process cannot be run successfully. In the cookie
baking example it could be that you run out of ingredients. In this case one returns also a
list containing one process-result but with succeeded-slot set to nil.

3. Third it could be that there is some kind of ambiguity. e.g. The recipe states that one should
add sugar but you don’t know whether it’s brown or white sugar. In this case run-process
should return a list process-results with a process-result for every possibility.

A process-result therefore plays a very important role not only in running the task but also when
diagnosing or repairing you will interface with the process-results quite often. All process-results
are remembered in the slot process-results of the task.

6.2.1 structure process-result

description The output of the execution of a process.

slot (data :accessor pr-data :type list :initarg :data :initform nil)

The data you wish to return to the task. It’s an alist containig pairs of
(datafield . data).

slot (confidence :type float :accessor pr-confidence
:initarg :confidence :initform 0.0)

How confident the process is of this result.

slot (succeeded :type boolean :accessor pr-succeeded
:initarg :succeeded :initform nil)

Whether depending procecces should be triggered.

6.2.2 generic function handle-process-result task-processor process process-result

description/ default
implementation

Checks a process-result and writes all necessary changes to the task-
processor (including the task it contains).

6.2.3 generic function handle-process-results task-processor process list

description/ default
implementation

Handles a list of process-results. This may change the task-processor but
it may also spawn new tasks.

6.3 Implementing your own task

Implementing your own task with it’s own processes is very easy.

6 Tasks and Processes 88

Assume you wish to create a task for baking cookies. This task contains three processes:

1. find-all-ingredients

2. make-cookies

3. bake-cookies

Although this is not entirely necessary we first create an agent because it makes more sense.

(defclass cookie-baking-agent (agent-with-tasks)
()
(:documentation "An agent capable of making delicious cookies."))

(defmethod initialize-instance :after ((agent cookie-baking-agent) &key)
(add-data-field agent ’available-ingredients nil))

Now we are ready to create a new class that derives from task or a subclass of task.

(defclass simple-cookie-baking-task (task)
()
(:documentation "An implementation of a task for baking simple cookies."))

Remember that a task already derives from object-with-learning-mechanisms. So although this
new task looks empty it is not. The next step is to let the task know about it’s processes and
their dependencies. It is obvious that one cannot bake cookies before one has made the cookies
and one cannot make cookies before one has found all necessary ingredients. So we have a linear
dependency between the three processes. We do this as follows:

(defmethod initialize-instance
:around ((task simple-cookie-baking-task) &key &allow-other-keys)

(call-next-method)

(add-data-field task ’used-ingredients nil)
(add-data-field task ’missing-ingredients nil)
(add-data-field task ’cookies nil)

(add-process task ’find-all-ingredients nil)
(add-process task ’make-cookies ’(find-all-ingredients))
(add-process task ’bake-cookies ’(make-cookies)))

The next thing is to implement run-process methods for all three processes. The most important
thing to note is that they specialize on process with eql and that they always return a list of
process-results.

(defmethod run-process ((task simple-cookie-baking-task)
(process (eql ’find-all-ingredients)))

(if (subsetp ’(chocolate flour) (get-data task ’available-ingredients))
(list (make-process-result :succeeded t :confidence 1.0

:data (list (cons ’ingredients (chocolate flour)))))
(list (make-process-result :succeeded nil :confidence 0.0

:data (list (cons ’ingredients
(intersection ’(chocolate flour)

(get-data task ’available-ingredients))))))))

6 Tasks and Processes 89

(defmethod run-process ((task simple-cookie-baking-task)
(process (eql ’make-cookies)))

...
(list (make-process-result ...)))

(defmethod run-process ((task simple-cookie-baking-task)
(process (eql ’bake-cookies)))

...
(list (make-process-result ...)))

There is only one thing left to do now, which is to provide a test that allows the task to know it
has achieved it’s goal. This is done by implementing the goal-achieved method.

(defmethod goal-achieved ((task simple-cookie-baking-task))
(and (find ’bake-cookies (finished-processes task))

(succeeded (get-process-result task ’bake-cookies))))

A fully working implementation can be found in the file simple-cookie-baking-task.lisp which can
be found under experiment cookie-experiment in folder experiments.

6.4 Process Learning Mechanisms

Since learning is crucially important we have dedicated a chapter to accomodate all there is to
know about learning in the Babel framework. We refer you to chapter 5. In that chapter the above
example will also be further expanded with learning mechanisms.

7 Fluid Construction Grammar: Syntax and Semantics

7.1 Introduction

Fluid Construction Grammar’s (FCG) linguistic perspective is in the general line of cognitive
linguistics and construction grammar (??) and like many other contemporary theories it is feature
structure- and unification-based. It is currently the only computational construction grammar
formalism that can handle both parsing and production using the same set of constructions rather
than using separate generation and parsing procedures as is done in other formalisms. So far, FCG
has mainly been applied in research on the emergence and evolution of grammatical phenomena
(?). This document will detail the syntax and semantics required for writing FCG constructions
of varying complexity.1

7.2 Syntax and Semantics of FCG

The core data structure in FCG is a Coupled Feature Structure (CFS). As the name implies this
is a coupling of two feature structures divided by <-->. These two feature structures are also
referred to as left-pole and right-pole and in general (but not necessarily) the left-pole contains the
semantics of the structure, the right pole the syntax.

A Feature Structure (FS) is an unordered list of units2 and a unit is a list starting with a name
(which has to be unique in the feature structure) followed by the actual features. A list encloses
its elements within parentheses, thus a list of the elements a b and c is written as (a b c). A list
can also include sub-lists as for instance the list (e f) instead of the element c which results in
the list (a b (e f)).

A feature then is a list starting with a name (which has to be unique in the unit, not in the feature
structure) followed by its value which can be any sort of (nested) list structure3. The template for
a coupled feature structure looks like this:

1
The interested reader is pointed to www.fcg-net.org to find links to our publications and more information on FCG.

2
For linguists it might be helpful to think of units as constituents.

3
There is one feature, the referent feature, where the value should not be a list but can be a single symbol. But

this is an exception to the rule.

90

7 Fluid Construction Grammar: Syntax and Semantics 91

Coupled Feature Structure

((unit-1-name
(feature-name-1 values) // values should be a list
(feature-name-2 values)) // unique feature-names in the unit

(unit-2-name // unique unit-names in the FS
(feature-name-2 values) // non unique feature-names in the FS
(feature-name-3 values)))

<-->
right-pole (similar to the left-pole)

Note that a unit cannot contain another unit (i.e. they cannot be nested) and thus you cannot
in this way build a tree-like feature structure. Instead in FCG a tree structure is built by using a
special subunits feature of which the value is a list of unit-names as shown below.

Coupled Feature Structure

((unit-1-name
(feature-name-1 values) // values should be a list
(feature-name-2 values)) // unique feature-names in the unit
(unit-2-name // unique unit-names in the FS
(feature-name-2 values) // non unique feature-names in the FS
(feature-name-3 values)))

<-->
right-pole (similar to the left-pole)

Note that a unit cannot contain another unit (i.e. they cannot be nested)
and thus you cannot in this way build a tree-like feature structure. In FCG
a tree structure is built by using a special subunits feature of which the
value is a list of unit-names.

1 2

Subunits Example

((unit-1
(subunits (unit-2 unit-3)))
(unit-2
(subunits (unit-4)))
(unit-3)
(unit-4))

a tree4

Basic Coupled Feature Structure

((top-unit
(meaning (()

FCG constructions are pairings of form and meaning, whereby a construc-
tion’s meaning is frame-based and incorporates frame-semantic information
both directly in its meaning feature and in its semantic categories (more
information below).

Basic FCG Construction
4
In fact it can be a set of trees, but this capability is currently not used.

2

(a) FS in list representation

07/01/10 15:00Babel web interface

Page 1 of 1http://localhost:8000/

feature-name-1

subunits

feature-name-1

subunits

unit-1-name

unit-1-name

values
(unit-2-name)

unit-1-name

values
(unit-2-name)

unit-
1

unit-1

reset

unit-2-name

feature-name-2

feature-name-3

unit-2-name

values
values

feature-name-2

feature-name-3

unit-2-name

values
values

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

unit-
2

giving
up

unit-2 unit-4

unit-3

(b) FS graphically

Language processing in FCG always starts from an initial coupled feature structure consisting of one
unit at both sides containing either only meaning (in production) or only form (in parsing). This
CFS is then gradually modified by applying a sequence of FCG constructions. These constructions

are also coupled feature structures but they can contain variables and special FCG operators that
guide the unification process. An FCG variable is represented as a symbol that starts with a
question mark. During unification it can be bound to a symbol, a list or another variable, but of
course only to one value (check the examples).

Unification Examples

(unify ’(a b (c)) ’(a b (c))) // unifies (both lists are equal)
(unify ’(a ?x c) ’(a b c)) // unifies and binds variable ?x to b
(unify ’((a (?z)) ?z) // won’t unify because ?z

’((a (b)) c)) // should be bound both to b and c
(unify ’(a b) ’(b a)) // won’t unify because the order differs
(unify ’(a b c) ’(a b)) // won’t unify because of c

FCG Special Operators

The FCG special operators guide the unification process by making it either more flexible or stricter.
This section gives an overview of the most important ones. These operators are normally put at
the beginning of a list and a↵ect the values of that list.

7 Fluid Construction Grammar: Syntax and Semantics 92

4

((?top-unit
(sem-subunits (?noun-unit))
(meaning ((det ?ref [THE])))
(footprint (==0 det-noun)))

(?noun-unit
(referent ?ref)))

<-->
((?top-unit

(form ((string ?det-unit "the")
(meets ?det-unit ?noun-unit)))

(syn-subunits (?noun-unit))
(footprint (==0 det-noun)))

(?noun-unit
(syn-cat (==1 (pos noun)))))

((?top-unit ((?top-unit
(sem-subunits (== ?noun-unit)) (form (== (string ?det-unit "the")
(meaning ((det ?ref [THE]))) (meets ?det-unit ?noun-unit)))
(footprint (==0 det-noun))) <--> (syn-subunits (?noun-unit))

(?noun-unit (footprint (==0 det-noun)))
(referent ?ref))) (?noun-unit

(syn-cat (==1 (pos noun)))))

Remark that unification in FCG never adds elements, except when binding
variables and thus works di↵erently than HPSG unification [ref]. Adding ele-
ments is done by another operation called merge. Just like unification, merging
requires two feature structures of which only one can contain special operators.
We call the feature structure containing the special operators the pattern and
the other one the source

4. The merger will look for any extension of the source
so that it would unify with the pattern.

FCG-Merge Examples

(fcg-merge ’a ’a) // returns ’a
(fcg-merge ’(a) ’(a)) // returns ’(a)
(fcg-merge ’(a) ’(a b)) // does not merge
(fcg-merge ’(== a) ’(a b)) // returns ’(a b)
(fcg-merge ’(a b) ’(a)) // returns ’(a b)
(fcg-merge ’(==0 a) ’(b)) // returns ’(b)

Merging can also return multiple hypotheses, for example:

(fcg-merge ’(== ?x a) ’(a b c))

returns ’(a b c) with ?x bound to either b or c.
Before we continue with more advanced ways to alter the feature structure

there is one last key idea crucial to the understanding of grammatical con-
structions in FCG. This is the idea of linking through variable equalities. Both
unification and merging are capable of making two distinct variables refer to
the same binding. We call this a variable equality.

4FCG constructions are thus patterns and the feature structures they apply on the source.

(a) FCG construction in list representation.

Includes Operator (==)

functionality : The includes operator allows the list to be a sub-list of the other list and the
ordering doesn’t matter.

example : The last two examples from above will work by adding the includes operator.

(unify ’(== a b) ’(b a))
(unify ’(== b a) ’(a b c))

Includes Uniquely Operator (==1)

Functionality : The includes uniquely operator is like the includes operator but doesn’t allow
elements from the list to appear more than once in the other list. If the element is a list it
only checks the first element of this list.

Example :

(unify ’(==1 a b) ’(a a b)) // won’t unify although == would
(unify ’(==1 (a)) ’((a) (a b))) // won’t unify

Includes Not Operator (==0)

Functionality : The Includes Not operator essentially disallows the elements that follow to appear
in the other list. Even if one of them appears, it is enough to block the unification (also the
ordering doesn’t matter).

Example :

(unify ’(==0 a b c) ’(x)) // unifies
(unify ’(==0 b a c) ’(a)) // does not unify

Permutation Operator (==p)

Functionality : The permutation operator allows the other list to be a permutation of the list (i.e.
the order doesn’t matter).

Example :

(unify ’(==p ?x b) ’(b a))
(unify ’(==p c a) ’(c b a)) // This won’t unify, although == would

The above extensions allow us to write FCG constructions such as the one shown in figure 7.1.

7 Fluid Construction Grammar: Syntax and Semantics 93

meaning

footprint

?top-unit-139

((det ?ref-90
[the]))

(==0 det-noun)

form

footprint

the+noun, g154314

?top-unit-139

((string ?det-unit-31
"the")

(meets ?det-unit-31
?noun-unit-105))

(==0 det-noun)

reset

referent

?noun-
unit-105

?ref-90

sem syn
� �

save
syn-cat

?noun-unit-105

(==1
(pos noun))

Babel web interface http://localhost:8000/

1 of 1 28/01/10 11:06

(b) FCG construction in graphical representation

Figure 7.1: An FCG construction containing special operators.

Remark that unification in FCG never adds elements, except when binding variables and thus
works di↵erently than HPSG unification (?). Adding elements is done by another operation called
merge. Just like unification, merging requires two feature structures of which only one can contain
special operators. We call the feature structure containing the special operators the pattern and
the other one the source.4 The merger will look for any extension of the source so that it would
unify with the pattern. In the examples below the pattern is the first parameter, the source the
second.

FCG-Merge Examples

(fcg-merge ’a ’a) // returns ’a
(fcg-merge ’(a) ’(a)) // returns ’(a)
(fcg-merge ’(a) ’(a b)) // does not merge
(fcg-merge ’(== a) ’(a b)) // returns ’(a b)
(fcg-merge ’(a b) ’(a)) // returns ’(a b)
(fcg-merge ’(==0 a) ’(b)) // returns ’(b)

Merging can also return multiple hypotheses, for example:

(fcg-merge ’(== ?x a) ’(a b c))

returns ’(a b c) with ?x bound to either b or c.

Before we continue with more advanced ways to alter the feature structure there is one last key
idea crucial to the understanding of grammatical constructions in FCG. This is the idea of linking

through variable equalities (see (?)). As noted earlier one variable cannot be bound to multiple
values but multiple variables can be bound to the same value (which can be a variable itself), we
call this a variable equality.

7.2.1 Modification of Units and Moving Information between Units

Although we can now modify structures by merging in new information this is not powerful enough
to build the complex constituent structures needed for processing natural language. In fact there
are three important operations we currently cannot achieve:
4
FCG constructions are thus patterns and the feature structures they apply on the source.

7 Fluid Construction Grammar: Syntax and Semantics 94

1. We are unable to create new units.5

2. We cannot relocate existing (or new) units in the tree.

3. We cannot move features from one unit to another.

In what follows we will show how we have solved these problems in FCG through a special tree
manipulation operator called the J-operator (?).

The J-operator is specified inside the feature structure itself and resides at the same level as the
units, which is why we refer to the declarations of these operations as J-units. Such a J-unit doesn’t
however specify a unit at all, but instead specifies operations on a unit. To distinguish it clearly
from “normal” units a J-unit does not start with a symbol (the unit-name) but instead with a list
starting with the symbol J.

A J-unit specifies operations for only one unit, called the focus unit. Of course a feature structure
can contain multiple J-units allowing operations on multiple units. The focus unit therefore is the
only parameter you are required to supply.

((?top
(form ((string ?top "big"))))

((J ?new-unit)
(syn-cat ((pos adjective)))))

The above feature structure consists of only one “real”unit ?top and one J-unit. When merged
it will create a new unit ?new-unit containing the syntactic category adjective. It’s that easy to
create new units and as shown in the example, the body of a J-unit (i.e. the part after the initial
list) resembles that of a regular unit in that it can contain feature value pairs.

Although we can now create new units we would still like to specify where it should be located
in the feature structure tree. This is, we would like to specify its parent unit and optionally even
child units. This can be done by two optional parameters following the focus unit, first specifying
the parent and then a list of children as shown in figure 7.2.

In the examples so far the focus unit has always been a reference to a new unit. The focus unit
however, can refer to an existing unit as well. It will then not create a new unit but operate on the
referred unit.

From the three missing operations presented above we have now addressed the first two. All
that remains is the moving of features from one unit to another (existing or new) unit. To move
something from A to B you need a way to mark the thing you wish to move and whereto. Marking
what feature value pair you wish to move is done by the tag-operator which allows you to bind a
feature-value pair to a variable. It has the following syntax:

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a J-unit to mark where
the feature value pair should be moved to. It works like cut and paste, you cut by the tag-operator
and paste by placing the tag-variable at the desired location in a J-unit. This means the body of a
J-unit also allows these tag-variables to reside there next to feature value pairs. You cannot refer
5
This could be done by merging, but not for complex trees and this would also cause problems with the bi-

directionality of FCG.

7 Fluid Construction Grammar: Syntax and Semantics 95
6

((top
(syn-subunits (unit-1 unit-2 unit-3))
(form ((meets unit-1 unit-2)

(meets unit-2 unit-3))))
(unit-1
(form ((string unit-1 ‘‘FCG’’)))
(syn-cat (ref-expression)))

(unit-2
(form ((meets unit-4 unit-5)))
(syn-cat ((pos verb)))
(syn-subunits (unit-4 unit-5)))

(unit-4
(form ((string unit-4 ‘‘produce’’))))

(unit-5
(form ((string unit-5 ‘‘-s’’))))

(unit-3
(syn-cat (ref-expression))))

((?top
(syn-subunits (== ?creator ?created ?create))
(form (== (meets ?creator ?create)

(meets ?create ?created)))
(syn-cat (==0 S)))

(?creator
(syn-cat (==1 ref-expression)))

(?create
(syn-cat (==1 (pos verb))))

(?created
(syn-cat (==1 ref-expression)))

((J ?new ?top (?created ?create ?creator))
(syn-cat (S))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

FCG Form Predicates

String Predicate (string item-1 string-1)

Functionality The string predicate determines that item-1 has string-1 as its
form.

(a) Syntactic Feature Structure

6

6

((top
(syn-subunits (unit-1 unit-2 unit-3))
(form ((meets unit-1 unit-2)

(meets unit-2 unit-3))))
(unit-1
(form ((string unit-1 ‘‘FCG’’)))
(syn-cat (ref-expression)))

(unit-2
(form ((meets unit-4 unit-5)))
(syn-cat ((pos verb)))
(syn-subunits (unit-4 unit-5)))

(unit-4
(form ((string unit-4 ‘‘produce’’))))

(unit-5
(form ((string unit-5 ‘‘-s’’))))

(unit-3
(syn-cat (ref-expression))))

((?top
(syn-subunits (== ?creator ?created ?create))
(form (== (meets ?creator ?create)

(meets ?create ?created)))
(syn-cat (==0 S)))

(?creator
(syn-cat (==1 ref-expression)))

(?create
(syn-cat (==1 (pos verb))))

(?created
(syn-cat (==1 ref-expression)))

((J ?new ?top (?created ?create ?creator))
(syn-cat (S))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

FCG Form Predicates

String Predicate (string item-1 string-1)

Functionality The string predicate determines that item-1 has string-1 as its
form.

(a) Syntactic Feature Structure

6

((top
(syn-subunits (unit-1 unit-2 unit-3))
(form ((meets unit-1 unit-2)

(meets unit-2 unit-3))))
(unit-1
(form ((string unit-1 ‘‘FCG’’)))
(syn-cat (ref-expression)))
(unit-2
(form ((meets unit-4 unit-5)))
(syn-cat ((pos verb)))
(syn-subunits (unit-4 unit-5)))
(unit-4
(form ((string unit-4 ‘‘produce’’))))
(unit-5
(form ((string unit-5 ‘‘-s’’))))
(unit-3
(syn-cat (ref-expression))))

((?top
(syn-subunits (== ?creator ?created ?create))
(form (== (meets ?creator ?create)

(meets ?create ?created)))
(syn-cat (==0 S)))
(?creator
(syn-cat (==1 ref-expression)))
(?create
(syn-cat (==1 (pos verb))))
(?created
(syn-cat (==1 ref-expression)))
((J ?new ?top (?created ?create ?creator))
(syn-cat (S))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

FCG Form Predicates

String Predicate (string item-1 string-1)

Functionality The string predicate determines that item-1 has string-1 as its
form.

(b) Syntactic pole of an FCG construction

((?top
(syn-subunits (== ?creator ?created ?create))
(form (== (meets ?creator ?create)

(meets ?create ?created)))
(syn-cat (==0 S)))

(?creator
(syn-cat (==1 ref-expression)))

(?create
(syn-cat (==1 (pos verb))))

(?created
(syn-cat (==1 ref-expression)))

((J ?new ?top (?created ?create ?creator))
(syn-cat (S))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(b) Syntactic pole of an FCG construction

form

form

syn-cat

?top

((string ?top "big"))

?top

((string ?top "big"))

?new-unit

((pos adjective))

top

top

new-unit

top

reset

unit-1

unit-2

unit-4

unit-5

unit-3

unit-1

unit-2

unit-4

unit-5

unit-3

new-unit

unit-1

unit-2

unit-4

unit-5

unit-3

Babel web interface http://localhost:8000/

1 of 1 29/01/10 12:27

form

form

syn-cat

?top

((string ?top "big"))

?top

((string ?top "big"))

?new-unit

((pos adjective))

top

top

new-unit

top

reset

unit-1

unit-2

unit-4

unit-5

unit-3

unit-1

unit-2

unit-4

unit-5

unit-3

new-unit

unit-1

unit-2

unit-4

unit-5

unit-3

Babel web interface http://localhost:8000/

1 of 1 29/01/10 12:27

(c)

Figure 7.2: Transformation of a feature structure by a J-unit.

to a tag-variable in regular units. An example is shown in figure 7.3 where a very small initial
feature structure containing only one unit with some meaning is transformed into a a new feature
structure containing two units and where the tagged meaning is moved from one to the other.

To conclude the syntax of a J-unit looks as follows:

((J focus parent children)
body)

with focus the only required parameter being a new variable or one of an existing unit. Parent
should be a variable referring to an existing unit and children a list of existing unit variables. Body
can contain tag-variables next to regular feature value pairs.

7 Fluid Construction Grammar: Syntax and Semantics 96

7

7

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a
J-unit to mark where the feature value pair should be moved to. It works like
cut and paste, you cut by the tag-operator and paste by placing the tag-variable
at the desired location in a J-unit. This means the body of a J-unit also allows
these tag-variables to reside there next to feature value pairs. You cannot refer
to a tag-variable in regular units.

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(a) Initial Semantic Feature Structure

7

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a
J-unit to mark where the feature value pair should be moved to. It works like
cut and paste, you cut by the tag-operator and paste by placing the tag-variable
at the desired location in a J-unit. This means the body of a J-unit also allows
these tag-variables to reside there next to feature value pairs. You cannot refer
to a tag-variable in regular units.

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(b) Final Semantic Feature Structure after
construction application

7

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a
J-unit to mark where the feature value pair should be moved to. It works like
cut and paste, you cut by the tag-operator and paste by placing the tag-variable
at the desired location in a J-unit. This means the body of a J-unit also allows
these tag-variables to reside there next to feature value pairs. You cannot refer
to a tag-variable in regular units.

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(c) Semantic pole of the applicable FCG con-
struction

Figure 3: Transformation of a feature structure by a J-unit including tags. Note
that (river x) is moved from top unit to the newly created river-unit

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

FCG Form Predicates

String Predicate (string item-1 string-1)

Functionality The string predicate determines that item-1 has string-1 as its
form.

7

7

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a
J-unit to mark where the feature value pair should be moved to. It works like
cut and paste, you cut by the tag-operator and paste by placing the tag-variable
at the desired location in a J-unit. This means the body of a J-unit also allows
these tag-variables to reside there next to feature value pairs. You cannot refer
to a tag-variable in regular units.

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(a) Initial Semantic Feature Structure

7

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a
J-unit to mark where the feature value pair should be moved to. It works like
cut and paste, you cut by the tag-operator and paste by placing the tag-variable
at the desired location in a J-unit. This means the body of a J-unit also allows
these tag-variables to reside there next to feature value pairs. You cannot refer
to a tag-variable in regular units.

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(b) Final Semantic Feature Structure after
construction application

7

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a
J-unit to mark where the feature value pair should be moved to. It works like
cut and paste, you cut by the tag-operator and paste by placing the tag-variable
at the desired location in a J-unit. This means the body of a J-unit also allows
these tag-variables to reside there next to feature value pairs. You cannot refer
to a tag-variable in regular units.

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(c) Semantic pole of the applicable FCG con-
struction

Figure 3: Transformation of a feature structure by a J-unit including tags. Note
that (river x) is moved from top unit to the newly created river-unit

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

FCG Form Predicates

String Predicate (string item-1 string-1)

Functionality The string predicate determines that item-1 has string-1 as its
form.

7

7

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a
J-unit to mark where the feature value pair should be moved to. It works like
cut and paste, you cut by the tag-operator and paste by placing the tag-variable
at the desired location in a J-unit. This means the body of a J-unit also allows
these tag-variables to reside there next to feature value pairs. You cannot refer
to a tag-variable in regular units.

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(a) Initial Semantic Feature Structure

7

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a
J-unit to mark where the feature value pair should be moved to. It works like
cut and paste, you cut by the tag-operator and paste by placing the tag-variable
at the desired location in a J-unit. This means the body of a J-unit also allows
these tag-variables to reside there next to feature value pairs. You cannot refer
to a tag-variable in regular units.

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(b) Final Semantic Feature Structure after
construction application

7

(tag ?tag-name (feature value))

You can then simply put the tag variable (i.e. ?tag-name) in the body of a
J-unit to mark where the feature value pair should be moved to. It works like
cut and paste, you cut by the tag-operator and paste by placing the tag-variable
at the desired location in a J-unit. This means the body of a J-unit also allows
these tag-variables to reside there next to feature value pairs. You cannot refer
to a tag-variable in regular units.

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

J-operator and J-units

Functionality The J-operator allows to build J-units. Their main purpose
is to specify how the construction modifies constituent structure, but
they can also be used for modifying existing units and, when combined
with a TAG operator (see below), for moving information between units.
On the surface, a J-unit looks like a regular unit except that its name,
which is a symbol in case of a regular unit, is now a list of the form
(J name parent children), instructing fcg to make the unit referred
to by name a subunit of the parent unit, and to make all units specified
in the children slot subunits of the unit referred to by name [5].

Example

TAG-operator

Functionality

Example

(c) Semantic pole of the applicable FCG con-
struction

Figure 3: Transformation of a feature structure by a J-unit including tags. Note
that (river x) is moved from top unit to the newly created river-unit

((top
(meaning ((river x)

(det x [THE])))))

((?top
(TAG ?tagged-meaning

(meaning (== (river ?x)))))
((J ?river ?top)
(referent ?x)
?tagged-meaning
(sem-cat (== natural locale))))

((top
(meaning ((det x [THE])))
(sem-subunits (river-unit)))
(river-unit
(meaning ((river x)))
(referent x)
(sem-cat (natural locale))))

FCG Form Predicates

String Predicate (string item-1 string-1)

Functionality The string predicate determines that item-1 has string-1 as its
form.

Figure 7.3: Transformation of a feature structure by a J-unit including tags. Note that (river x) is
moved from top unit to the newly created river-unit

7.3 Language Processing in FCG

So far we have been concentrating on unification and merging of single feature structures6. We
will now focus on coupled feature structure and how they are processed in bi-directional language
processing.

Fluid Construction Grammar supports both production (generation in HPSG terminology) and
parsing using the same set of constructions. Both start with an initial coupled feature structure
that contains either only meaning (in production) or form (in parsing). This coupled feature
structure is the key data structure of the language processing. It is this structure that will be
modified by applicable constructions finally resulting in a much larger feature structure containing
the inferred form and meaning. A high level view of such processing shown in figure 7.4.

As is clear from figure 7.4 applying a construction consists of at least two phases, a unification
phase and a merge phase. As explained in section 7.2 unification is quite strict and can thus be
seen as a conditional for the construction to apply. We do not both left and right pole of the
coupled feature structure but only the left pole in production and the right-pole in parsing. When
unification of the required pole is successful both poles of the construction are merged with the
central coupled feature structure.

6
We take J operations to be part of merging.

7 Fluid Construction Grammar: Syntax and Semantics 97

UNIT
A

CXN
1

CXN
2

CXN
3

...

CXN
72

CXN
73

UNIT
A

UNIT
B

UNIT
C

Initial
CFS constructions

CXN
1

CXN
2

CXN
3

...

CXN
72

CXN
73

CFS
modified by

cxn 3 and 72

UNIFY

MERGE

MERGE
UNIFY

UNIFY

UNIT
A

UNIT
B

UNIT
D

UNIT
C

...

constructions
CFS

modified by
cxn 2

MERGE

Figure 7.4: A schematic high level depiction of language processing in FCG. From left to right
you start with an initial coupled feature structure (cfs). Every construction tries to unify with
the cfs and those that can, can merge with the cfs thereby altering it and potentially allow other
constructions to unify. This process is repeated until no constructions can apply any longer.

8 Test Framework

We supply a home-made, light weight unit testing framework that makes use of the powerful
conditions system in lisp and the monitoring system from Babel.

In this chapter we will not describe its inner working but only its outward functionality. All of the
code can be found in tests/test-framework.lisp.

8.1 Writing tests

Instead of using defun of defmethod when writing unit tests you use deftest. It behaves just like
a defun but is surrounded by error-capturing and reporting functionality. In a deftest you can
do whatever you would normally do in a defun with the addition of test-error, test-ok and
test-assert which you can wrap around other calls.

8.1.1 macro test-error expression

description test-error should be used for testing that errors you expect to be thrown,
are indeed thrown. When wrapping an expression in test-error it will
expect an error to be thrown. It will capture any error that is thrown,
print a dot and continue. If however no error is thrown, it throws an error
itself.

8.1.2 macro test-ok expression

description When wrapping an expression in test-ok you expect that no error will be
thrown. If an error should be thrown it will be captures and it’s message
will be printed later on. Furthermore an “x” will be printed instead of a
dot.

8.1.3 macro test-assert expression

description When wrapping an expression in test-assert you expect the expression to
not throw an error and return not nil. If however nil is returned this will
be printed later on. If an error should be thrown this will also be reported.

The nice thing about these three macros is that they give informative feedback when things go
wrong and it will continue its processing even if errors are thrown. If all goes well only dots will
be printed for every call to one of those macros.

98

8 Test Framework 99

8.2 Example

(defun func-that-throws-an-error ()
(error "foo bar"))

(defun func-that-throws-no-error ()
t)

(deftest test-1 ()
;; these are good tests
(test-assert (and (equal 2 (+ 1 1))

(eql (* 2 5) 10)))
(test-ok (find 1 ’(1 2 3)))
(test-error (func-that-throws-an-error))
;; the next ones go wrong, but indeed the code keeps running
(test-assert (equal 1 2))
(test-ok (func-that-throws-an-error))
(test-error (func-that-throws-no-error))
;; and again some good tests
(test-assert 1))

(deftest test-2 ()
;; even when an error is thrown outside a (test-...) call we do not
;; crash but we cannot however simply continue.
(test-ok (+ 1 1))
(func-that-throws-an-error)
(test-ok (+ 2 2)))

(defun run-tests ()
(test-1)
(test-2))

(run-tests)

Calling run-tests will return the following output:

TEST-1: ...x
assertion failed for: (EQUAL 1 2)x
call: (FUNC-THAT-THROWS-AN-ERROR) generated an error!x
call: (FUNC-THAT-THROWS-NO-ERROR) DID NOT generate an error but you expected one!.

TEST-2: .x
TEST-2 threw an unexpected error:
foo bar

	1 Introduction
	1.1 Getting started
	1.2 Overview of Babel2
	systems
	libraries
	experiments
	sharing
	examples

	2 Utilities
	2.1 Copying Objects
	2.1.1 generic function copy-object
	2.1.2 generic function copy-object-content

	2.2 Blackboards
	2.2.1 structure blackboard
	2.2.2 generic function fields
	2.2.3 generic function field?
	2.2.4 generic function add-data-field
	2.2.5 generic function get-data
	2.2.6 generic function find-data
	2.2.7 generic function set-data
	2.2.8 generic function remove-data

	2.3 Trees
	2.3.1 structure node
	2.3.2 structure dummy-top-node
	2.3.3 structure mtree
	2.3.4 generic function has-parent?
	2.3.5 generic function traverse
	2.3.6 generic function leaf?
	2.3.7 generic function top?
	2.3.8 generic function leafs
	2.3.9 generic function add-node
	2.3.10 generic function replace-node
	2.3.11 generic function depth

	3 Monitoring Experiments
	3.1 Events, Monitors and Notfications
	3.1.1 macro define-event
	3.1.2 macro define-monitor
	3.1.3 macro define-event-handler
	3.1.4 macro notify
	3.1.5 macro activate-monitor
	3.1.6 macro deactivate-monitor
	3.1.7 macro toggle-monitor
	3.1.8 macro toggle-monitors
	3.1.9 macro print-all-monitors
	3.1.10 macro print-all-events
	3.1.11 Pre-defined Events
	3.1.11.1 monitor event interaction-started
	3.1.11.2 monitor event interaction-finished
	3.1.11.3 monitor event series-finished
	3.1.11.4 monitor event batch-finished
	3.1.11.5 monitor event reset-monitors

	3.2 Built-in Monitor Classes
	3.2.1 Printing Program Traces
	3.2.1.1 monitor class trace-monitor
	3.2.1.2 function activate-buffering-of-trace-monitors
	3.2.1.3 function print-buffered-messages-of-trace-monitors
	3.2.1.4 function clear-trace-monitors-buffer
	3.2.1.5 macro deactivate-buffering-of-trace-monitors
	3.2.1.6 generic function print-with-overline

	3.2.2 Recording Data
	3.2.2.1 monitor class data-recorder

	3.2.3 Outputting Recorded Data
	3.2.3.1 monitor class data-handler
	3.2.3.2 monitor class data-printer
	3.2.3.3 monitor class data-file-writer
	3.2.3.4 monitor class text-data-file-writer
	3.2.3.5 monitor class lisp-data-file-writer

	3.2.4 Plotting Data with Gnuplot
	3.2.4.1 monitor class gnuplotter
	3.2.4.2 monitor class gnuplot-display
	3.2.4.3 monitor class gnuplot-graphic-generator
	3.2.4.4 monitor class gnuplot-display-and-graphic-generator
	3.2.4.5 monitor class gnuplot-file-writer

	3.2.5 Recording and Plotting Lists of Data
	3.2.5.1 monitor class alist-recorder
	3.2.5.2 monitor class alist-handler
	3.2.5.3 monitor class alist-printer
	3.2.5.4 monitor class alist-gnuplotter
	3.2.5.5 monitor class alist-gnuplot-display
	3.2.5.6 monitor class alist-gnuplot-graphic-generator
	3.2.5.7 monitor class alist-gnuplot-display-and-graphic-generator

	3.3 Behind the Scenes
	3.3.1 Classes for Monitors and Events
	3.3.1.1 class monitor
	3.3.1.2 class event
	3.3.1.3 global variable *monitors*
	3.3.1.4 global variable *events*
	3.3.1.5 function get-monitor
	3.3.1.6 function get-event

	3.3.2 The Creation of Monitors, Events and Handlers
	3.3.2.1 function make-monitor-unless-already-defined
	3.3.2.2 function subscribe-to-event
	3.3.2.3 function make-event-unless-already-defined
	3.3.2.4 function make-event-handler

	3.3.3 Defining own Monitor Classes

	4 The Experiment Framework
	4.1 Agents Situated in the World
	4.1.1 Actions Performed on the World
	4.1.1.1 class action
	4.1.1.2 class no-action
	4.1.1.3 class world
	4.1.1.4 generic function initialize-world-for-next-interaction
	4.1.1.5 generic function update-world

	4.1.2 Running Agents
	4.1.2.1 class agent
	4.1.2.2 generic function run-agent
	4.1.2.3 generic function plan-action
	4.1.2.4 generic-function plan-action-based-on-last-action
	4.1.2.5 generic function perform-action
	4.1.2.6 monitor event run-agent-started
	4.1.2.7 monitor event run-agent-finished
	4.1.2.8 generic function initialize-interaction
	4.1.2.9 generic function consolidate-agent

	4.2 Interacting Agents
	4.2.1 Experiments and Populations
	4.2.1.1 class experiment
	4.2.1.2 generic function initialize-population
	4.2.1.3 monitor event population-initialized

	4.2.2 Running an Interaction
	4.2.2.1 generic function determine-interacting-agents
	4.2.2.2 monitor event interacting-agents-determined
	4.2.2.3 generic function run-interaction
	4.2.2.4 generic function called-before-run-interaction
	4.2.2.5 generic function called-after-run-interaction

	4.2.3 Running Experiments
	4.2.3.1 generic function run-series
	4.2.3.2 generic function run-batch
	4.2.3.3 monitor trace-interaction
	4.2.3.4 monitor trace-experiment

	4.3 Learning Mechanisms
	4.4 An Interaction Example
	4.5 Running Parallel Series of Experiments
	4.5.1 function run-parallel-batch
	4.5.2 function create-graphs-for-different-experimental-conditions
	4.5.3 function create-graphs-for-different-experimental-configurations
	4.5.4 function create-graphs-for-different-population-sizes

	5 Learning
	5.1 Base classes
	5.1.1 class diagnostic
	5.1.2 monitor event diagnostic-started
	5.1.3 class problem
	5.1.4 monitor event diagnostic-returned-problems
	5.1.5 class repair-strategy
	5.1.6 monitor event repairing-started
	5.1.7 monitor event repairing-finished
	5.1.8 class object-with-learning-mechanisms
	5.1.9 generic function add-diagnostic
	5.1.10 generic function delete-diagnostic
	5.1.11 generic function add-repair-strategy
	5.1.12 generic function delete-repair-strategy
	5.1.13 monitor trace-learning
	5.1.14 monitor trace-learning-verbose

	5.2 Process level learning
	5.2.1 class process-diagnostic
	5.2.2 generic function diagnose-process
	5.2.3 class task-problem
	5.2.4 class process-repair-strategy
	5.2.5 generic function repair-process

	5.3 Agent level learning
	5.3.1 class agent-diagnostic
	5.3.2 generic function diagnose-agent
	5.3.3 class agent-repair-strategy
	5.3.4 generic function repair-agent
	5.3.5 class rerun-data
	5.3.6 class rerun-data-with-restored-task

	5.4 FCG level learning
	5.4.1 class fcg-diagnostic
	5.4.2 generic function diagnose-fcg
	5.4.3 class fcg-repair-strategy
	5.4.4 generic function repair-fcg
	5.4.5 class fcg-agent

	5.5 Detailed example

	6 Tasks and Processes
	6.1 Tasks, task-processors and task-results
	6.1.1 Task
	6.1.1.1 class task
	6.1.1.2 generic function get-process-result
	6.1.1.3 generic function run-process
	6.1.1.4 generic function goal-achieved
	6.1.1.5 generic function finished-processes
	6.1.1.6 generic function add-process
	6.1.1.7 generic function delete-process
	6.1.1.8 generic function run-task
	6.1.1.9 generic function get-all-process-dependencies
	6.1.1.10 generic function get-all-dependent-processes
	6.1.1.11 generic function dependencies-solved?
	6.1.1.12 generic function get-processes-without-dependencies
	6.1.1.13 generic function get-process-dependencies
	6.1.1.14 generic function add-process-result

	6.1.2 Behind the scenes: Running of a Task
	6.1.2.1 structure task-processor
	6.1.2.2 generic function restart-task
	6.1.2.3 generic function run-processes
	6.1.2.4 structure task-result
	6.1.2.5 structure task-result-collection
	6.1.2.6 generic function best-task-result
	6.1.2.7 generic function best-task

	6.2 Processes and Process-results
	6.2.1 structure process-result
	6.2.2 generic function handle-process-result
	6.2.3 generic function handle-process-results

	6.3 Implementing your own task
	6.4 Process Learning Mechanisms

	7 Fluid Construction Grammar: Syntax and Semantics
	7.1 Introduction
	7.2 Syntax and Semantics of FCG
	7.2.1 Modification of Units and Moving Information between Units

	7.3 Language Processing in FCG

	8 Test Framework
	8.1 Writing tests
	8.1.1 macro test-error
	8.1.2 macro test-ok
	8.1.3 macro test-assert

	8.2 Example

